Imaging the Brain with Optical Methods

Imaging the Brain with Optical Methods

Author: Anna W. Roe

Publisher: Springer Science & Business Media

Published: 2009-11-11

Total Pages: 271

ISBN-13: 1441904522

DOWNLOAD EBOOK

Monitoring brain function with light in vivo has become a reality. The technology 33 of detecting and interpreting patterns of reflected light has reached a degree of 34 maturity that now permits high spatial and temporal resolution visualization at both 35 the systems and cellular levels. There now exist several optical imaging methodolo- 36 gies, based on either hemodynamic changes in nervous tissue or neurally induced 37 light scattering changes, that can be used to measure ongoing activity in the brain. 38 These include the techniques of intrinsic signal optical imaging, near-infrared optical 39 imaging, fast optical imaging based on scattered light, optical imaging with voltage 40 sensitive dyes, and two-photon imaging of hemodynamic signals. The purpose of 41 this volume is to capture some of the latest applications of these methodologies to 42 the study of cerebral cortical function. 43 This volume begins with an overview and history of optical imaging and its use 44 in the study of brain function. Several chapters are devoted to the method of intrin- 45 sic signal optical imaging, a method used to record the minute changes in optical 46 absorption due to hemodynamic changes that accompanies cortical activity. Since the 47 detected hemodynamic changes are highly localized, this method has excellent 48 spatial resolution (50–100 μm ), a resolution sufficient for visualization of fundamen- 49 tal modules of cerebral cortical function.


Optical Methods and Instrumentation in Brain Imaging and Therapy

Optical Methods and Instrumentation in Brain Imaging and Therapy

Author: Steen J. Madsen

Publisher: Springer Science & Business Media

Published: 2012-11-13

Total Pages: 284

ISBN-13: 1461449782

DOWNLOAD EBOOK

This book provides a comprehensive up-to-date review of optical approaches used in brain imaging and therapy. It covers a variety of imaging approaches including diffuse optical imaging, laser speckle imaging, photoacoustic imaging and optical coherence tomography. A number of laser-based therapeutic techniques are reviewed, including photodynamic therapy, fluorescence guided resection and photothermal therapy. Fundamental principles and instrumentation are discussed for each imaging and therapeutic approach.


Optical Imaging of Brain Function and Metabolism 2

Optical Imaging of Brain Function and Metabolism 2

Author: Arno Villringer

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 248

ISBN-13: 148990056X

DOWNLOAD EBOOK

This volume covers the latest developments in optical imaging of the brain which is becoming an increasingly important functional neuroimaging method. Optical intrinsic signals offer unrivaled temporal and spatial resolution of functional measurements of the exposed brain cortex in animals and humans. Near-infrared spectroscopy and imaging ap proaches permit the noninvasive functional assessment of the human brain at bedside. Main advantages of these optical techniques are the biochemical specificity of the meas urements and the potential of measuring correlates of intracellular and intravascular oxy genation simultaneously. Recent data indicate that one may also measure a more direct correlate of neuronal activity associated with changes in light scattering. In this volume, recent technical progress of the optical method is covered as well as the physiological basis of the measurements. In simultaneous studies, near-infrared spec troscopy measurements are directly compared to other functional methods, especially PET and fMRI and examples are given for new applications of the NIRS-method. Based on re sults obtained with optical methods and other functional techniques the latest in our under standing of the coupling of neuronal activity and cerebral blood flow response is reviewed. This is an important basis for a better understanding of all functional neuroi maging methods which rely on neurovascular coupling such as PET, SPET and fMRI. Fi nally the optical method is put into the perspective of presently available functional neuroimaging methods including fMRI, PET, MEG and EEG.


Advanced Optical Methods for Brain Imaging

Advanced Optical Methods for Brain Imaging

Author: Fu-Jen Kao

Publisher: Springer

Published: 2018-05-14

Total Pages: 342

ISBN-13: 9811090203

DOWNLOAD EBOOK

This book highlights the rapidly developing field of advanced optical methods for structural and functional brain imaging. As is known, the brain is the most poorly understood organ of a living body. It is indeed the most complex structure in the known universe and, thus, mapping of the brain has become one of the most exciting frontlines of contemporary research. Starting from the fundamentals of the brain, neurons and synapses, this book presents a streamlined and focused coverage of the core principles, theoretical and experimental approaches, and state-of-the-art applications of most of the currently used imaging methods in brain research. It presents contributions from international leaders on different photonics-based brain imaging modalities and techniques. Included are comprehensive descriptions of many of the technology driven spectacular advances made over the past few years that have allowed novel insights of the structural and functional details of neurons. The book is targeted at researchers, engineers and scientists who are working in the field of brain imaging, neuroscience and connectomics. Although this book is not intended to serve as a textbook, it will appeal to undergraduate students engaged in the specialization of brain imaging.


Optical Imaging of Brain Function and Metabolism

Optical Imaging of Brain Function and Metabolism

Author: Ulrich Dirnagl

Publisher: Springer Science & Business Media

Published: 2013-11-21

Total Pages: 290

ISBN-13: 148992468X

DOWNLOAD EBOOK

• . . . . At last the doctor will be freed from the tedious interpretation of screens and photographs. Instead, he will examine and scan through his patient directly. Wearing optical-shutter spectacles and aiming a pulsed laser torch, he will be able to peer at the beating heart, study the movement of a joint or the flexing of a muscle, press on suspect areas to see how the organs beneath respond, check that pills have been correctly swallowed or that an implant is savely in place, and so on. A patient wearing white cotton or nylon clothes that scatter but hardly absorb light, may not even have to undress . . . . •. David Jones, Nature (1990) 348:290 Optical imaging of the brain is a rapidly growing field of heterogenous techniques that has attracted considerable interest recently due to a number of theoretical advantages in comparison with other brain imaging modalities: it uses non ionizing radiation, offers high spatial and temporal resolution, and supplies new types of metabolic and functional information. From a practical standpoint it is important that bedside examinations seem feasible and that the implementations will be considerably less expensive compared with competing techniques. In October 1991, a symposium was held at the Eibsee near Garmisch, Germany to bring together the leading scientists in this new field.


In Vivo Optical Imaging of Brain Function

In Vivo Optical Imaging of Brain Function

Author: Ron D. Frostig

Publisher: CRC Press

Published: 2019-08-30

Total Pages: 428

ISBN-13: 9780367385651

DOWNLOAD EBOOK

These are exciting times for the field of optical imaging of brain function. Rapid developments in theory and technology continue to considerably advance understanding of brain function. Reflecting changes in the field during the past five years, the second edition of In Vivo Optical Imaging of Brain Function describes state-of-the-art techniques and their applications for the growing field of functional imaging in the live brain using optical imaging techniques. New in the Second Edition: Voltage-sensitive dyes imaging in awake behaving animals Imaging based on genetically encoded probes Imaging of mitochondrial auto-fluorescence as a tool for cortical mapping Using pH-sensitive dyes for functional mapping Modulated imaging Calcium imaging of neuronal activity using 2-photon microscopy Fourier approach to optical imaging Fully updated chapters from the first edition Leading Authorities Explore the Latest Techniques Updated to reflect continuous development in this emerging research area, this new edition, as with the original, reaches across disciplines to review a variety of non-invasive optical techniques used to study activity in the living brain. Leading authorities from such diverse areas as biophysics, neuroscience, and cognitive science present a host of perspectives that range from a single neuron to large assemblies of millions of neurons, captured at various temporal and spatial resolutions. Introducing techniques that were not available just a few years ago, the authors describe the theory, setup, analytical methods, and examples that highlight the advantages of each particular method.


Neurophotonics and Brain Mapping

Neurophotonics and Brain Mapping

Author: Yu Chen

Publisher: CRC Press

Published: 2017-06-14

Total Pages: 587

ISBN-13: 1482236869

DOWNLOAD EBOOK

Understanding how the brain works and developing effective therapeutics are important in advancing neuroscience and improving clinical patient care. Neurophotonics and Brain Mapping covers state-of-the-art research and development in optical technologies and applications for brain mapping and therapeutics. It provides a comprehensive overview of various methods developed using light, both microscopic and macroscopic techniques. Recent developments in minimally-invasive endoscopic imaging of deep brain structure and function, as well as light-based therapy are also reviewed.


All-Optical Methods to Study Neuronal Function

All-Optical Methods to Study Neuronal Function

Author: Eirini Papagiakoumou

Publisher: Springer Nature

Published: 2023-02-20

Total Pages: 424

ISBN-13: 1071627643

DOWNLOAD EBOOK

This open access volume provides an overview of the latest methods used to study neuronal function with all-optical experimental approaches, where light is used for both stimulation and monitoring of neuronal activity. The chapters in this book cover topics over a broad range, from fundamental background information in both physiology and optics in the context of all-optical neurophysiology experiments, to the design principles and hardware implementation of optical methods used for photoactivation and imaging. In the Neuromethods series style, chapters include the kind of detail and key advice from the specialists needed to get successful results in your laboratory. Comprehensive and cutting-edge, All-Optical Methods to Study Neuronal Function is a valuable resource for researchers in various disciplines such as physics, engineering, and neuroscience. This book will serve as a guide to establish useful references for groups starting out in this field, and provide insight on the optical systems, actuators, and sensors. This is an open access book.


Handbook of Neurophotonics

Handbook of Neurophotonics

Author: Francesco S. Pavone

Publisher: CRC Press

Published: 2020-05-10

Total Pages: 439

ISBN-13: 0429530900

DOWNLOAD EBOOK

The Handbook of Neurophotonics provides a dedicated overview of neurophotonics, covering the use of advanced optical technologies to record, stimulate, and control the activity of the brain, yielding new insight and advantages over conventional tools due to the adaptability and non-invasive nature of light. Including 32 colour figures, this book addresses functional studies of neurovascular signaling, metabolism, electrical excitation, and hemodynamics, as well as clinical applications for imaging and manipulating brain structure and function. The unifying theme throughout is not only to highlight the technology, but to show how these novel methods are becoming critical to breakthroughs that will lead to advances in our ability to manage and treat human diseases of the brain. Key Features: Provides the first dedicated book on state-of-the-art optical techniques for sensing and imaging across at the cellular, molecular, network, and whole brain levels. Highlights how the methods are used for measurement, control, and tracking of molecular events in live neuronal cells, both in basic research and clinical practice. Covers the entire spectrum of approaches, from optogenetics to functional methods, photostimulation, optical dissection, multiscale imaging, microscopy, and structural imaging. Includes chapters that show use of voltage-sensitive dye imaging, hemodynamic imaging, multiphoton imaging, temporal multiplexing, multiplane microscopy, optoacoustic imaging, near-infrared spectroscopy, and miniature neuroimaging devices to track cortical brain activity.


Optical Techniques for Integrated Control and Recording of Neural Activity

Optical Techniques for Integrated Control and Recording of Neural Activity

Author: Raag Dar Airan

Publisher: Stanford University

Published: 2010

Total Pages: 76

ISBN-13:

DOWNLOAD EBOOK

A long-standing objective of psychiatry has been the ability to both control and record the activity of precisely-defined populations of brain cells on the millisecond timescale most relevant for neural computation. Recent advances bring that goal increasingly near by leveraging the genetically-precise techniques of molecular biology with the high-speed, multiplexed command afforded by optical technologies to introduce and utilize light-sensitive neural activity control integrated with fast neural circuit imaging. In this thesis, I present exemplars of these technological advances and demonstrate their utility in illuminating the neural circuit basis of behaviors relevant to understanding psychiatric disease. I first show how fast neural circuit imaging may be integrated with optical neural control tools to develop insight into the role of genetically, developmentally, or projection defined populations of brain cells in mediating circuit-level physiological changes. I then demonstrate computational methods to analyze the resultant imaging data and apply fast circuit imaging to delineate links between hippocampal physiology and behavior in an animal model of depression. Finally, I present the development of a novel class of optically-activated, genetically-targetable control tools that permit optical control of G-protein coupled intracellular signaling; and the use of these molecular devices to determine causal roles of neuromodulatory inputs in reward processing. The development of these and similar optical modalities further improves the precision of questions addressable by the neuroscientist, and potentially the extent of disease treatable by the clinician.