Covering the basics of quantitative image analysis - the extraction of information from data in the form of pictures - this study places special emphasis on methods relevant to environmental scientists. Practical examples from various fields are introduced to demonstrate applications.
This Open Access textbook provides students and researchers in the life sciences with essential practical information on how to quantitatively analyze data images. It refrains from focusing on theory, and instead uses practical examples and step-by step protocols to familiarize readers with the most commonly used image processing and analysis platforms such as ImageJ, MatLab and Python. Besides gaining knowhow on algorithm usage, readers will learn how to create an analysis pipeline by scripting language; these skills are important in order to document reproducible image analysis workflows. The textbook is chiefly intended for advanced undergraduates in the life sciences and biomedicine without a theoretical background in data analysis, as well as for postdocs, staff scientists and faculty members who need to perform regular quantitative analyses of microscopy images.
Medical Image Analysis presents practical knowledge on medical image computing and analysis as written by top educators and experts. This text is a modern, practical, self-contained reference that conveys a mix of fundamental methodological concepts within different medical domains. Sections cover core representations and properties of digital images and image enhancement techniques, advanced image computing methods (including segmentation, registration, motion and shape analysis), machine learning, how medical image computing (MIC) is used in clinical and medical research, and how to identify alternative strategies and employ software tools to solve typical problems in MIC. - An authoritative presentation of key concepts and methods from experts in the field - Sections clearly explaining key methodological principles within relevant medical applications - Self-contained chapters enable the text to be used on courses with differing structures - A representative selection of modern topics and techniques in medical image computing - Focus on medical image computing as an enabling technology to tackle unmet clinical needs - Presentation of traditional and machine learning approaches to medical image computing
Computer vision and object recognition are two technological methods that are frequently used in various professional disciplines. In order to maintain high levels of quality and accuracy of services in these sectors, continuous enhancements and improvements are needed. The implementation of artificial intelligence and machine learning has assisted in the development of digital imaging, yet proper research on the applications of these advancing technologies is lacking. Applications of Advanced Machine Intelligence in Computer Vision and Object Recognition: Emerging Research and Opportunities explores the theoretical and practical aspects of modern advancements in digital image analysis and object detection as well as its applications within healthcare, security, and engineering fields. Featuring coverage on a broad range of topics such as disease detection, adaptive learning, and automated image segmentation, this book is ideally designed for engineers, physicians, researchers, academicians, practitioners, scientists, industry professionals, scholars, and students seeking research on the current developments in object recognition using artificial intelligence.
Deep Learning for Medical Image Analysis, Second Edition is a great learning resource for academic and industry researchers and graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Deep learning provides exciting solutions for medical image analysis problems and is a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component are applied to medical image detection, segmentation, registration, and computer-aided analysis.· Covers common research problems in medical image analysis and their challenges · Describes the latest deep learning methods and the theories behind approaches for medical image analysis · Teaches how algorithms are applied to a broad range of application areas including cardiac, neural and functional, colonoscopy, OCTA applications and model assessment · Includes a Foreword written by Nicholas Ayache
In modern medicine, imaging is the most effective tool for diagnostics, treatment planning and therapy. Almost all modalities have went to directly digital acquisition techniques and processing of this image data have become an important option for health care in future. This book is written by a team of internationally recognized experts from all over the world. It provides a brief but complete overview on medical image processing and analysis highlighting recent advances that have been made in academics. Color figures are used extensively to illustrate the methods and help the reader to understand the complex topics.
This book offers a comprehensive selection of essays by leading experts, which covers all aspects of modern imaging, from its application and up-scaling to its development. The chapter content ranges from the basics to the most complex overview of method and protocols. There is ample practical and detailed "how-to" content on important, but rarely addressed topics. This first edition features all-colour-plate chapters, licensed software and a unique, continuously updated website forum.
This new volume, number 123, of Methods in Cell Biology looks at methods for quantitative imaging in cell biology. It covers both theoretical and practical aspects of using optical fluorescence microscopy and image analysis techniques for quantitative applications. The introductory chapters cover fundamental concepts and techniques important for obtaining accurate and precise quantitative data from imaging systems. These chapters address how choice of microscope, fluorophores, and digital detector impact the quality of quantitative data, and include step-by-step protocols for capturing and analyzing quantitative images. Common quantitative applications, including co-localization, ratiometric imaging, and counting molecules, are covered in detail. Practical chapters cover topics critical to getting the most out of your imaging system, from microscope maintenance to creating standardized samples for measuring resolution. Later chapters cover recent advances in quantitative imaging techniques, including super-resolution and light sheet microscopy. With cutting-edge material, this comprehensive collection is intended to guide researchers for years to come. Covers sections on model systems and functional studies, imaging-based approaches and emerging studies Chapters are written by experts in the field Cutting-edge material
This book provides an introduction to physical chemistry that is directed toward applications to the biological sciences. Advanced mathematics is not required. This book can be used for either a one semester or two semester course, and as a reference volume by students and faculty in the biological sciences.