Advances in Neural Networks -- ISNN 2011

Advances in Neural Networks -- ISNN 2011

Author: Derong Liu

Publisher: Springer Science & Business Media

Published: 2011-05-10

Total Pages: 666

ISBN-13: 3642211046

DOWNLOAD EBOOK

The three-volume set LNCS 6675, 6676 and 6677 constitutes the refereed proceedings of the 8th International Symposium on Neural Networks, ISNN 2011, held in Guilin, China, in May/June 2011. The total of 215 papers presented in all three volumes were carefully reviewed and selected from 651 submissions. The contributions are structured in topical sections on computational neuroscience and cognitive science; neurodynamics and complex systems; stability and convergence analysis; neural network models; supervised learning and unsupervised learning; kernel methods and support vector machines; mixture models and clustering; visual perception and pattern recognition; motion, tracking and object recognition; natural scene analysis and speech recognition; neuromorphic hardware, fuzzy neural networks and robotics; multi-agent systems and adaptive dynamic programming; reinforcement learning and decision making; action and motor control; adaptive and hybrid intelligent systems; neuroinformatics and bioinformatics; information retrieval; data mining and knowledge discovery; and natural language processing.


Conference Proceedings of 2021 International Joint Conference on Energy, Electrical and Power Engineering

Conference Proceedings of 2021 International Joint Conference on Energy, Electrical and Power Engineering

Author: Wenping Cao

Publisher: Springer Nature

Published: 2022-10-12

Total Pages: 625

ISBN-13: 9811931712

DOWNLOAD EBOOK

This book will be a collection of the papers presented in the 2021 International Joint Conference on Energy, Electrical and Power Engineering (CoEEPE’21) , covering new and renewable energy, electrical and power engineering. It is expected to report the latest technological developments in the fields developed by academic researchers and industrial practitioners, with a focus on component design, optimization and control algorithms in electrical and power engineering systems. The applications and dissemination of these technologies will benefit research society as new research directions are getting more and more inter-disciplinary which require researchers from different research areas to come together and form ideas jointly. It will also benefit the electrical engineering and power industry as we are now experiencing a new wave of industrial revelation, that is, electrification, intelligentization and digitalisation of our transport, manufacturing process and way of thinking.


Complex-Valued Neural Networks

Complex-Valued Neural Networks

Author: Akira Hirose

Publisher: Springer Science & Business Media

Published: 2012-03-23

Total Pages: 205

ISBN-13: 3642276318

DOWNLOAD EBOOK

This book is the second enlarged and revised edition of the first successful monograph on complex-valued neural networks (CVNNs) published in 2006, which lends itself to graduate and undergraduate courses in electrical engineering, informatics, control engineering, mechanics, robotics, bioengineering, and other relevant fields. In the second edition the recent trends in CVNNs research are included, resulting in e.g. almost a doubled number of references. The parametron invented in 1954 is also referred to with discussion on analogy and disparity. Also various additional arguments on the advantages of the complex-valued neural networks enhancing the difference to real-valued neural networks are given in various sections. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplinary studies to realize comfortable society. It is also helpful to those who carry out research and development regarding new products and services at companies. The author wrote this book hoping in particular that it provides the readers with meaningful hints to make good use of neural networks in fully practical applications. The book emphasizes basic ideas and ways of thinking. Why do we need to consider neural networks that deal with complex numbers? What advantages do the complex-valued neural networks have? What is the origin of the advantages? In what areas do they develop principal applications? This book answers these questions by describing details and examples, which will inspire the readers with new ideas. The book is useful for those beginning their studies, for instance, in adaptive signal processing for highly functional sensing and imaging, control in unknown and changing environment, robotics inspired by human neural systems, and brain-like information processing, as well as interdisciplinary studies to realize comfortable society. It is also helpful to those who carry out research and development regarding new products and services at companies. The author wrote this book hoping in particular that it provides the readers with meaningful hints to make good use of neural networks in fully practical applications. The book emphasizes basic ideas and ways of thinking. Why do we need to consider neural networks that deal with complex numbers? What advantages do the complex-valued neural networks have? What is the origin of the advantages? In what areas do they develop principal applications? This book answers these questions by describing details and examples, which will inspire the readers with new ideas.


Artificial Intelligence in the Age of Neural Networks and Brain Computing

Artificial Intelligence in the Age of Neural Networks and Brain Computing

Author: Robert Kozma

Publisher: Academic Press

Published: 2023-10-11

Total Pages: 398

ISBN-13: 0323958168

DOWNLOAD EBOOK

Artificial Intelligence in the Age of Neural Networks and Brain Computing, Second Edition demonstrates that present disruptive implications and applications of AI is a development of the unique attributes of neural networks, mainly machine learning, distributed architectures, massive parallel processing, black-box inference, intrinsic nonlinearity, and smart autonomous search engines. The book covers the major basic ideas of "brain-like computing" behind AI, provides a framework to deep learning, and launches novel and intriguing paradigms as possible future alternatives. The present success of AI-based commercial products proposed by top industry leaders, such as Google, IBM, Microsoft, Intel, and Amazon, can be interpreted using the perspective presented in this book by viewing the co-existence of a successful synergism among what is referred to as computational intelligence, natural intelligence, brain computing, and neural engineering. The new edition has been updated to include major new advances in the field, including many new chapters. - Developed from the 30th anniversary of the International Neural Network Society (INNS) and the 2017 International Joint Conference on Neural Networks (IJCNN - Authored by top experts, global field pioneers, and researchers working on cutting-edge applications in signal processing, speech recognition, games, adaptive control and decision-making - Edited by high-level academics and researchers in intelligent systems and neural networks - Includes all new chapters, including topics such as Frontiers in Recurrent Neural Network Research; Big Science, Team Science, Open Science for Neuroscience; A Model-Based Approach for Bridging Scales of Cortical Activity; A Cognitive Architecture for Object Recognition in Video; How Brain Architecture Leads to Abstract Thought; Deep Learning-Based Speech Separation and Advances in AI, Neural Networks


Neural Networks for Perception

Neural Networks for Perception

Author: Harry Wechsler

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 384

ISBN-13: 1483262790

DOWNLOAD EBOOK

Neural Networks for Perception, Volume 2: Computation, Learning, and Architectures explores the computational and adaptation problems related to the use of neuronal systems, and the corresponding hardware architectures capable of implementing neural networks for perception and of coping with the complexity inherent in massively distributed computation. This book addresses both theoretical and practical issues related to the feasibility of both explaining human perception and implementing machine perception in terms of neural network models. The text is organized into two sections. The first section, computation and learning, discusses topics on learning visual behaviors, some of the elementary theory of the basic backpropagation neural network architecture, and computation and learning in the context of neural network capacity. The second section is on hardware architecture. The chapters included in this part of the book describe the architectures and possible applications of recent neurocomputing models. The Cohen-Grossberg model of associative memory, hybrid optical/digital architectures for neorocomputing, and electronic circuits for adaptive synapses are some of the subjects elucidated. Neuroscientists, computer scientists, engineers, and researchers in artificial intelligence will find the book useful.


The Promise of Neural Networks

The Promise of Neural Networks

Author: J.G. Taylor

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 159

ISBN-13: 1447103955

DOWNLOAD EBOOK

This book is the product of a 15-month intensive investigation of the European artificial network scene, together with a view of the broader framework of the subject in a world context. It could not have been completed in such a remarkably short time, and so effectively, without the dedicated efforts of Louise Turner, the DEANNA secretary, and Geoff Chappell, the DEANNA researcher, at the Centre for Neural Networks, King's College, London. I would like to take this opportunity to thank them for their heroic efforts. I would also like to thank my colleagues in the Centre and in the Mathematics Department, especially Mark Plumbley, Michael Reiss and Trevor Clarkson for all their help and encouragement, Denise Gorse of University College London, for allowing use of her lecture notes as a basis for the tutorial and the DEANNA partners for the part they played. Finally I would like to acknowledge the European Community support, and especially Mike Coyle for his trenchant comments during the carrying out of the work. March 1993 J. G. Taylor CONTENTS PART I: SETTING THE SCENE Chapter 1: DEANNA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1 . 1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . 2 The Geographical Dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1 1. 3 The Industrial Dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1 . 4 The Plan for Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 2: Neural Net Demonstrators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2. 1 The Status of Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2. 2 Reasons for the Employment of Neural Networks . . . . . . . . . . . . . . . . . . . 9 2. 3 Neural Network Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2. 4 Areas of Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2. 5 Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


2021 International Joint Conference on Neural Networks (IJCNN)

2021 International Joint Conference on Neural Networks (IJCNN)

Author: IEEE Staff

Publisher:

Published: 2021-07-18

Total Pages:

ISBN-13: 9781665445979

DOWNLOAD EBOOK

JCNN is the premier international conference on neural networks theory, analysis, and a wide range of applications IJCNN 2021 is a truly interdisciplinary event with a broad range of contributions on recent advances in neural networks, including neuroscience and cognitive science, computational intelligence and machine learning, hybrid techniques, nonlinear dynamics and chaos, various soft computing technologies, bioinformatics and biomedicine, and engineering applications


IJCNN International Joint Conference on Neural Networks

IJCNN International Joint Conference on Neural Networks

Author: Institute of Electrical and Electronics Engineers

Publisher: International Neural Network Society

Published: 1992-01-01

Total Pages: 4012

ISBN-13: 9780780305595

DOWNLOAD EBOOK

Major conference in the field of neural networks with the latest theoretical and practical developments. Topics include: applications, image and signal processing, data analysis, mathematical foundations, neural network architectures, and robotics and control.


MEG

MEG

Author: Peter Hansen

Publisher: Oxford University Press

Published: 2010-07-01

Total Pages: 449

ISBN-13: 0199719136

DOWNLOAD EBOOK

Magnetoencephalography (MEG) is an exciting brain imaging technology that allows real-time tracking of neural activity, making it an invaluable tool for advancing our understanding of brain function. In this comprehensive introduction to MEG, Peter Hansen, Morten Kringelbach, and Riitta Salmelin have brought together the leading researchers to provide the basic tools for planning and executing MEG experiments, as well as analyzing and interpreting the resulting data. Chapters on the basics describe the fundamentals of MEG and its instrumentation, and provide guidelines for designing experiments and performing successful measurements. Chapters on data analysis present it in detail, from general concepts and assumptions to analysis of evoked responses and oscillatory background activity. Chapters on solutions propose potential solutions to the inverse problem using techniques such as minimum norm estimates, spatial filters and beamformers. Chapters on combinations elucidate how MEG can be used to complement other neuroimaging techniques. Chapters on applications provide practical examples of how to use MEG to study sensory processing and cognitive tasks, and how MEG can be used in a clinical setting. These chapters form a complete basic reference source for those interested in exploring or already using MEG that will hopefully inspire them to try to develop new, exciting approaches to designing and analyzing their own studies. This book will be a valuable resource for researchers from diverse fields, including neuroimaging, cognitive neuroscience, medical imaging, computer modelling, as well as for clinical practitioners.