Energy and power are fundamental concepts in electromagnetism and circuit theory, as well as in optics, signal processing, power engineering, electrical machines, and power electronics. However, in crossing the disciplinary borders, we encounter understanding difficulties due to (1) the many possible mathematical representations of the same physical objects, and (2) the many possible physical interpretations of the same mathematical entities. The monograph proposes a quantum and a relativistic approach to electromagnetic power theory that is based on recent advances in physics and mathematics. The book takes a fresh look at old debates related to the significance of the Poynting theorem and the interpretation of reactive power. Reformulated in the mathematical language of geometric algebra, the new expression of electromagnetic power reflects the laws of conservation of energy-momentum in fields and circuits. The monograph offers a mathematically consistent and a physically coherent interpretation of the power concept and of the mechanism of power transmission at the subatomic (mesoscopic) level. The monograph proves (paraphrasing Heaviside) that there is no finality in the development of a vibrant discipline: power theory.
The current model for electricity generation and distribution is dominated by centralized power plants which are typically associated with combustion (coal, oil, and natural gas) or nuclear generation units. These power models require distribution from the center to outlying consumers and have many disadvantages concerning the electric utilities, transmission and distribution, and greenhouse gas emissions. This resulted in the modelling and development of cleaner renewable power generation with alternative sources such as photovoltaic (PV), wind, and other sources. Further, due to matured PV technology, constant drop-in installation cost, greenhouse emissions reductions, energy efficiency, reduced transmission and distribution investments, minimization of electric losses, and network support, the development of PV systems is proliferating. In view of this development, this book provides an idea for setting up the PV plant from initial study of the site to plan sizing. Once the first planning is covered, the book focuses on the modeling aspects of power electronics converter and control elements associated with it keeping the operating standards specified for the development of distributed generation systems in check. This book will be useful for industrial professionals and researchers who are working toward modeling of PV plants, and their control in grid connected operation. All the necessary information related to these fields is available in the book.
Concurrent Engineering (CE) is based on the premise that different phases of a product’s lifecycle should be conducted concurrently and initiated as early as possible within the Product Creation Process (PCP). It has become the substantive basic methodology in many industries, including automotive, aerospace, machinery, shipbuilding, consumer goods, process industry and environmental engineering. CE aims to increase the efficiency of the PCP and reduce errors in later phases while incorporating considerations for full lifecycle and through-life operations. This book presents the proceedings of the 22nd ISPE Inc. (International Society for Productivity Enhancement) International Conference on Concurrent Engineering (CE2015) entitled ‘Transdisciplinary Lifecycle Analysis of Systems’, and held in Delft, the Netherlands, in July 2015. It is the second in the series ‘Advances in Transdisciplinary Engineering’. The book includes 63 peer reviewed papers and 2 keynote speeches arranged in 10 sections: keynote speeches; systems engineering; customization and variability management; production oriented design, maintenance and repair; design methods and knowledge-based engineering; multidisciplinary product management; sustainable product development; service oriented design; product lifecycle management; and trends in CE. Containing papers ranging from the theoretical and conceptual to the highly pragmatic, this book will be of interest to all engineering professionals and practitioners; researchers, designers and educators.
This book discusses key concepts, challenges and potential solutions in connection with established and emerging topics in advanced computing, renewable energy and network communications. Gathering edited papers presented at MARC 2018 on July 19, 2018, it will help researchers pursue and promote advanced research in the fields of electrical engineering, communication, computing and manufacturing.