This book provides an introductory text which will enable the reader to both appreciate the essential characteristics of stepping motor systems and understand how these characteristics are being exploited in the continuing development of new motors, drives and controllers.
Dr. Bennett traces the growing awareness of the importance and significance of the concept of feedback in engineering and details the technical developments that contributed to this awareness. There follows an account of the development of steam and hydraulic servomechanisms and their application to the control of ships and aircraft.
Traces the consolidation of a specialty, as the various feedback control devices used in the 1930s for aircraft and ships, the telephone system, and analogue computers, were brought together during World War II to form what is now known as the classical frequency response methods of analysis and design, and applied to non-linear, sampled-data, and stochastic systems. Follows the field's development through the post-war addition of the root locus method to the introduction of the state-space methods of modern control. Distributed by INSPEC. Annotation copyright by Book News, Inc., Portland, OR
This book collects together in one volume a number of suggested control engineering solutions which are intended to be representative of solutions applicable to a broad class of control problems. It is neither a control theory book nor a handbook of laboratory experiments, but it does include both the basic theory of control and associated practical laboratory set-ups to illustrate the solutions proposed.
This revised edition includes all IEC proposed amendments and corrections for the planned 1999 revision of IEC 1131-3, as agreed by the IEC working group. It accurately describes the languages and concepts, and interprets the standard for practical implementation and applications.
A systematic and unified presentation of the fundamentals of adaptive control theory in both continuous time and discrete time Today, adaptive control theory has grown to be a rigorous and mature discipline. As the advantages of adaptive systems for developing advanced applications grow apparent, adaptive control is becoming more popular in many fields of engineering and science. Using a simple, balanced, and harmonious style, this book provides a convenient introduction to the subject and improves one's understanding of adaptive control theory. Adaptive Control Design and Analysis features: Introduction to systems and control Stability, operator norms, and signal convergence Adaptive parameter estimation State feedback adaptive control designs Parametrization of state observers for adaptive control Unified continuous and discrete-time adaptive control L1+a robustness theory for adaptive systems Direct and indirect adaptive control designs Benchmark comparison study of adaptive control designs Multivariate adaptive control Nonlinear adaptive control Adaptive compensation of actuator nonlinearities End-of-chapter discussion, problems, and advanced topics As either a textbook or reference, this self-contained tutorial of adaptive control design and analysis is ideal for practicing engineers, researchers, and graduate students alike.
This practical yet rigorous book provides a development of nonlinear, Lyapunov-based tools and their use in the solution of control-theoretic problems. Rich in motivating examples and new design techniques, the text balances theoretical foundations and real-world implementation.
This book contains a great deal of practical information for drives and industrial engineers who use motors and drives. It is a comprehensive guide to the technology underlying drives and motors.
An introductory book that provides theoretical, practical, and application coverage of the emerging field of type-2 fuzzy logic control Until recently, little was known about type-2 fuzzy controllers due to the lack of basic calculation methods available for type-2 fuzzy sets and logic—and many different aspects of type-2 fuzzy control still needed to be investigated in order to advance this new and powerful technology. This self-contained reference covers everything readers need to know about the growing field. Written with an educational focus in mind, Introduction to Type-2 Fuzzy Logic Control: Theory and Applications uses a coherent structure and uniform mathematical notations to link chapters that are closely related, reflecting the book’s central themes: analysis and design of type-2 fuzzy control systems. The book includes worked examples, experiment and simulation results, and comprehensive reference materials. The book also offers downloadable computer programs from an associated website. Presented by world-class leaders in type-2 fuzzy logic control, Introduction to Type-2 Fuzzy Logic Control: Is useful for any technical person interested in learning type-2 fuzzy control theory and its applications Offers experiment and simulation results via downloadable computer programs Features type-2 fuzzy logic background chapters to make the book self-contained Provides an extensive literature survey on both fuzzy logic and related type-2 fuzzy control Introduction to Type-2 Fuzzy Logic Control is an easy-to-read reference book suitable for engineers, researchers, and graduate students who want to gain deep insight into type-2 fuzzy logic control.
Digital controllers are part of nearly all modern personal, industrial, and transportation systems. Every senior or graduate student of electrical, chemical or mechanical engineering should therefore be familiar with the basic theory of digital controllers. This new text covers the fundamental principles and applications of digital control engineering, with emphasis on engineering design. Fadali and Visioli cover analysis and design of digitally controlled systems and describe applications of digital controls in a wide range of fields. With worked examples and Matlab applications in every chapter and many end-of-chapter assignments, this text provides both theory and practice for those coming to digital control engineering for the first time, whether as a student or practicing engineer. Extensive Use of computational tools: Matlab sections at end of each chapter show how to implement concepts from the chapter Frees the student from the drudgery of mundane calculations and allows him to consider more subtle aspects of control system analysis and design An engineering approach to digital controls: emphasis throughout the book is on design of control systems. Mathematics is used to help explain concepts, but throughout the text discussion is tied to design and implementation. For example coverage of analog controls in chapter 5 is not simply a review, but is used to show how analog control systems map to digital control systems Review of Background Material: contains review material to aid understanding of digital control analysis and design. Examples include discussion of discrete-time systems in time domain and frequency domain (reviewed from linear systems course) and root locus design in s-domain and z-domain (reviewed from feedback control course) Inclusion of Advanced Topics In addition to the basic topics required for a one semester senior/graduate class, the text includes some advanced material to make it suitable for an introductory graduate level class or for two quarters at the senior/graduate level. Examples of optional topics are state-space methods, which may receive brief coverage in a one semester course, and nonlinear discrete-time systems Minimal Mathematics Prerequisites The mathematics background required for understanding most of the book is based on what can be reasonably expected from the average electrical, chemical or mechanical engineering senior. This background includes three semesters of calculus, differential equations and basic linear algebra. Some texts on digital control require more