Identification of Parametric Models

Identification of Parametric Models

Author: Eric Walter

Publisher:

Published: 1997-01-14

Total Pages: 440

ISBN-13:

DOWNLOAD EBOOK

The presentation of a coherent methodology for the estimation of the parameters of mathematical models from experimental data is examined in this volume. Many topics are covered including the choice of the structure of the mathematical model, the choice of a performance criterion to compare models, the optimization of this performance criterion, the evaluation of the uncertainty in the estimated parameters, the design of experiments so as to get the most relevant data and the critical analysis of results. There are also several features unique to the work such as an up-to-date presentation of the methodology for testing models for identifiability and distinguishability and a comprehensive treatment of parametric optimization which includes greater consider ation of numerical aspects and which examines recursive and non-recursive methods for linear and nonlinear models.


Process Control

Process Control

Author: Jean-Pierre Corriou

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 763

ISBN-13: 1447138481

DOWNLOAD EBOOK

This reference book can be read at different levels, making it a powerful source of information. It presents most of the aspects of control that can help anyone to have a synthetic view of control theory and possible applications, especially concerning process engineering.


Nonparametric System Identification

Nonparametric System Identification

Author: Wlodzimierz Greblicki

Publisher: Cambridge University Press

Published: 2012-10-04

Total Pages: 0

ISBN-13: 9781107410626

DOWNLOAD EBOOK

Presenting a thorough overview of the theoretical foundations of non-parametric system identification for nonlinear block-oriented systems, this books shows that non-parametric regression can be successfully applied to system identification, and it highlights the achievements in doing so. With emphasis on Hammerstein, Wiener systems, and their multidimensional extensions, the authors show how to identify nonlinear subsystems and their characteristics when limited information exists. Algorithms using trigonometric, Legendre, Laguerre, and Hermite series are investigated, and the kernel algorithm, its semirecursive versions, and fully recursive modifications are covered. The theories of modern non-parametric regression, approximation, and orthogonal expansions, along with new approaches to system identification (including semiparametric identification), are provided. Detailed information about all tools used is provided in the appendices. This book is for researchers and practitioners in systems theory, signal processing, and communications and will appeal to researchers in fields like mechanics, economics, and biology, where experimental data are used to obtain models of systems.


Modelling and Parameter Estimation of Dynamic Systems

Modelling and Parameter Estimation of Dynamic Systems

Author: J.R. Raol

Publisher: IET

Published: 2004-08-13

Total Pages: 405

ISBN-13: 0863413633

DOWNLOAD EBOOK

This book presents a detailed examination of the estimation techniques and modeling problems. The theory is furnished with several illustrations and computer programs to promote better understanding of system modeling and parameter estimation.


System Identification

System Identification

Author: Rik Pintelon

Publisher: John Wiley & Sons

Published: 2004-04-05

Total Pages: 644

ISBN-13: 0471660957

DOWNLOAD EBOOK

Electrical Engineering System Identification A Frequency Domain Approach How does one model a linear dynamic system from noisy data? This book presents a general approach to this problem, with both practical examples and theoretical discussions that give the reader a sound understanding of the subject and of the pitfalls that might occur on the road from raw data to validated model. The emphasis is on robust methods that can be used with a minimum of user interaction. Readers in many fields of engineering will gain knowledge about: * Choice of experimental setup and experiment design * Automatic characterization of disturbing noise * Generation of a good plant model * Detection, qualification, and quantification of nonlinear distortions * Identification of continuous- and discrete-time models * Improved model validation tools and from the theoretical side about: * System identification * Interrelations between time- and frequency-domain approaches * Stochastic properties of the estimators * Stochastic analysis System Identification: A Frequency Domain Approach is written for practicing engineers and scientists who do not want to delve into mathematical details of proofs. Also, it is written for researchers who wish to learn more about the theoretical aspects of the proofs. Several of the introductory chapters are suitable for undergraduates. Each chapter begins with an abstract and ends with exercises, and examples are given throughout.


Identification of Linear Systems

Identification of Linear Systems

Author: J. Schoukens

Publisher: Elsevier

Published: 2014-06-28

Total Pages: 353

ISBN-13: 0080912567

DOWNLOAD EBOOK

This book concentrates on the problem of accurate modeling of linear systems. It presents a thorough description of a method of modeling a linear dynamic invariant system by its transfer function. The first two chapters provide a general introduction and review for those readers who are unfamiliar with identification theory so that they have a sufficient background knowledge for understanding the methods described later. The main body of the book looks at the basic method used by the authors to estimate the parameter of the transfer function, how it is possible to optimize the excitation signals. Further chapters extend the estimation method proposed. Applications are then discussed and the book concludes with practical guidelines which illustrate the method and offer some rules-of-thumb.


Principles of Neural Model Identification, Selection and Adequacy

Principles of Neural Model Identification, Selection and Adequacy

Author: Achilleas Zapranis

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 194

ISBN-13: 1447105591

DOWNLOAD EBOOK

Neural networks have had considerable success in a variety of disciplines including engineering, control, and financial modelling. However a major weakness is the lack of established procedures for testing mis-specified models and the statistical significance of the various parameters which have been estimated. This is particularly important in the majority of financial applications where the data generating processes are dominantly stochastic and only partially deterministic. Based on the latest, most significant developments in estimation theory, model selection and the theory of mis-specified models, this volume develops neural networks into an advanced financial econometrics tool for non-parametric modelling. It provides the theoretical framework required, and displays the efficient use of neural networks for modelling complex financial phenomena. Unlike most other books in this area, this one treats neural networks as statistical devices for non-linear, non-parametric regression analysis.


Principles of System Identification

Principles of System Identification

Author: Arun K. Tangirala

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 881

ISBN-13: 143989602X

DOWNLOAD EBOOK

Master Techniques and Successfully Build Models Using a Single Resource Vital to all data-driven or measurement-based process operations, system identification is an interface that is based on observational science, and centers on developing mathematical models from observed data. Principles of System Identification: Theory and Practice is an introductory-level book that presents the basic foundations and underlying methods relevant to system identification. The overall scope of the book focuses on system identification with an emphasis on practice, and concentrates most specifically on discrete-time linear system identification. Useful for Both Theory and Practice The book presents the foundational pillars of identification, namely, the theory of discrete-time LTI systems, the basics of signal processing, the theory of random processes, and estimation theory. It explains the core theoretical concepts of building (linear) dynamic models from experimental data, as well as the experimental and practical aspects of identification. The author offers glimpses of modern developments in this area, and provides numerical and simulation-based examples, case studies, end-of-chapter problems, and other ample references to code for illustration and training. Comprising 26 chapters, and ideal for coursework and self-study, this extensive text: Provides the essential concepts of identification Lays down the foundations of mathematical descriptions of systems, random processes, and estimation in the context of identification Discusses the theory pertaining to non-parametric and parametric models for deterministic-plus-stochastic LTI systems in detail Demonstrates the concepts and methods of identification on different case-studies Presents a gradual development of state-space identification and grey-box modeling Offers an overview of advanced topics of identification namely the linear time-varying (LTV), non-linear, and closed-loop identification Discusses a multivariable approach to identification using the iterative principal component analysis Embeds MATLAB® codes for illustrated examples in the text at the respective points Principles of System Identification: Theory and Practice presents a formal base in LTI deterministic and stochastic systems modeling and estimation theory; it is a one-stop reference for introductory to moderately advanced courses on system identification, as well as introductory courses on stochastic signal processing or time-series analysis.The MATLAB scripts and SIMULINK models used as examples and case studies in the book are also available on the author's website: http://arunkt.wix.com/homepage#!textbook/c397


2019-20 MATRIX Annals

2019-20 MATRIX Annals

Author: Jan de Gier

Publisher: Springer Nature

Published: 2021-02-10

Total Pages: 798

ISBN-13: 3030624978

DOWNLOAD EBOOK

MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-4 weeks in duration. This book is a scientific record of the ten programs held at MATRIX in 2019 and the two programs held in January 2020: · Topology of Manifolds: Interactions Between High and Low Dimensions · Australian-German Workshop on Differential Geometry in the Large · Aperiodic Order meets Number Theory · Ergodic Theory, Diophantine Approximation and Related Topics · Influencing Public Health Policy with Data-informed Mathematical Models of Infectious Diseases · International Workshop on Spatial Statistics · Mathematics of Physiological Rhythms · Conservation Laws, Interfaces and Mixing · Structural Graph Theory Downunder · Tropical Geometry and Mirror Symmetry · Early Career Researchers Workshop on Geometric Analysis and PDEs · Harmonic Analysis and Dispersive PDEs: Problems and Progress The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on a topic related to the MATRIX program; the remaining contributions are predominantly lecture notes or short articles based on talks or activities at MATRIX.