This report provides a review of stem cells/progenitor cells and their responses to ionising radiation in relation to issues relevant to stochastic effects of radiation which form a major part of the ICRP system of radiological protection. Current information on stem cell characteristics, maintenance and renewal, evolution with age, location in stem cell “niches”, radiosensitivity to acute and protracted exposures, is presented in a series of substantial reviews as Annexes concerning haematopoietic tissue, mammary gland, thyroid, digestive tract, lung, skin and bone. This foundation of knowledge of stem cells is used in the main text of the report to provide a biological insight to issues such as the linear-no-threshold (LNT) model, cancer risk among tissues, dose-rate effects and changes in the risk of radiation carcinogenesis by age at exposure and attained age.
The International Commission on Radiological Protection (ICRP) has developed and systematically updated the system of radiological protection, which now recommends optimisation of protection measures within or guided by appropriate restrictions, such as dose constraints or reference levels, in all circumstances. This applies to all exposure situations (planned, emergency and existing) and all categories of exposure (occupational, medical, and public). Optimisation of protection is intended to reduce exposures to levels that are as low as reasonably achievable, economic and societal considerations being taken into account, and to manage medical exposures commensurate with the medical purpose.
Following the issuance of new radiological protection recommendations in Publication 103 (ICRP, 2007), the Commission released, in Publication 110 (ICRP, 2009), the adult male and female voxel-type reference computational phantoms to be used for the calculation of the reference dose coefficients for both external and internal exposures. While providing more anatomically realistic representations of internal anatomy than the older stylised phantoms, the voxel phantoms have their limitations, mainly due to voxel resolution, especially with respect to small tissue structures (e.g. lens of the eye) and very thin tissue layers (e.g. stem cell layers in the stomach wall mucosa and intestinal epithelium).This report describes the construction of the adult mesh-type reference computational phantoms (MRCPs) that are the modelling counterparts of the Publication 110 voxel-type reference computational phantoms. The MRCPs include all source and target regions needed for estimating effective dose, even the μm-thick target regions in the respiratory and alimentary tract, skin, and urinary bladder, assimilating the supplemental stylised models. The MRCPs can be directly implemented into Monte Carlo particle transport codes for dose calculations, i.e. without voxelisation, fully maintaining the advantages of the mesh geometry.
This book discusses important fundamentals of radiation safety with specific details on dose units, calculations, measuring, and biological effects of ionizing radiation. The author covers different exposure situations and their requirements, and relevant legislation and regulations governing radiation safety. The book also examines radioactive waste management, the transport of radioactive materials, emergency planning and preparedness and various examples of radiation protection programs for industrial, medical, and academic applications.
Although many radiation protection scientists and engineers use dose coefficients, few know the origin of those dose coefficients. This is the first book in over 40 years to address the topic of radiation protection dosimetry in intimate detail. Advanced Radiation Protection Dosimetry covers all methods used in radiation protection dosimetry, including advanced external and internal radiation dosimetry concepts and regulatory applications. This book is an ideal reference for both scientists and practitioners in radiation protection and students in graduate health physics and medical physics courses. Features: A much-needed book filling a gap in the market in a rapidly expanding area Contains the history, evolution, and the most up-to-date computational dosimetry models Authored and edited by internationally recognized authorities and subject area specialists Interrogates both the origins and methodologies of dose coefficient calculation Incorporates the latest international guidance for radiation dosimetry and protection
Atoms, Radiation, and Radiation Protection Discover the keys to radiation protection in the fourth edition of this best-selling textbook A variety of atomic and sub-atomic processes, including alpha, beta, and gamma decay or electron ejection from inner atom shells, can produce ionizing radiation. This radiation can in turn produce environmental and biological effects both harmful – including DNA damage and other impacts of so-called ‘radiation sickness’ – and helpful, including radiation treatment for cancerous tumors. Understanding the processes that generate radiation and the steps which can be taken to mitigate or direct its effects is therefore critical in a wide range of industries and medical subfields. For decades, Atoms, Radiation, and Radiation Protection has served as the classic reference work on the subject of ionizing radiation and its safeguards. Beginning with a presentation of fundamental atomic structure and the physical mechanisms which produce radiation, the book also includes thorough discussion of how radiation can be detected and measured, as well as guide-lines for interpreting radiation statistics and detailed analysis of protective measures, both individual and environmental. Now updated by a new generation of leading scholars and researchers, Atoms, Radiation, and Radiation Protection will continue to serve global scientific and industrial research communities. Readers of the fourth edition of Atoms, Radiation, and Radiation Protection will also find: Detailed updates of existing material, including the latest recommendations of the ICRP and NCRP Treatment of current physiokinetic and dosimetric models All statistics now presented in SI units, making the book more globally accessible Atoms, Radiation, and Radiation Protection is a foundational guide for graduate students and researchers in health physics and nuclear physics, as well as related industries.
This publication is aimed at students and teachers involved in teaching programmes in field of medical radiation physics, and it covers the basic medical physics knowledge required in the form of a syllabus for modern radiation oncology. The information will be useful to those preparing for professional certification exams in radiation oncology, medical physics, dosimetry or radiotherapy technology.
This report provides a compendium of current information relating to radiation dose to patients, including biokinetic models, biokinetic data, dose coefficients for organ and tissue absorbed doses, and effective dose for major radiopharmaceuticals based on ICRP radiation protection guidance. These data were compiled from ICRP Publications 53, 80, and 106 and related amendments and corrections. This report also includes new information for 82Rb-chloride, iodide (123I, 124I, 125I, and 131I) and 123I labelled 2ß-carbomethoxy 3ß-(4-iodophenyl)-N-(3-fluoropropyl) nortropane (FPCIT). The data presented in this report are intended for diagnostic nuclear medicine and not for therapeutic applications.
Describes an approach for assessing doses to members of the public as part of an environmental impact analysis of predictive radioactive discharges. This is achieved by using screening models which describe environmental processes in mathematical terms, producing a quantitative result.