IBM InfoSphere Streams Harnessing Data in Motion

IBM InfoSphere Streams Harnessing Data in Motion

Author: Chuck Ballard

Publisher: IBM Redbooks

Published: 2010-09-14

Total Pages: 360

ISBN-13: 0738434736

DOWNLOAD EBOOK

In this IBM® Redbooks® publication, we discuss and describe the positioning, functions, capabilities, and advanced programming techniques for IBM InfoSphereTM Streams (V1). See: http://www.redbooks.ibm.com/abstracts/sg247970.html for the newer InfoSphere Streams (V2) release. Stream computing is a new paradigm. In traditional processing, queries are typically run against relatively static sources of data to provide a query result set for analysis. With stream computing, a process that can be thought of as a continuous query, that is, the results are continuously updated as the data sources are refreshed. So, traditional queries seek and access static data, but with stream computing, a continuous stream of data flows to the application and is continuously evaluated by static queries. However, with IBM InfoSphere Streams, those queries can be modified over time as requirements change. IBM InfoSphere Streams takes a fundamentally different approach to continuous processing and differentiates itself with its distributed runtime platform, programming model, and tools for developing continuous processing applications. The data streams consumable by IBM InfoSphere Streams can originate from sensors, cameras, news feeds, stock tickers, and a variety of other sources, including traditional databases. It provides an execution platform and services for applications that ingest, filter, analyze, and correlate potentially massive volumes of continuous data streams.


IBM InfoSphere Streams: Assembling Continuous Insight in the Information Revolution

IBM InfoSphere Streams: Assembling Continuous Insight in the Information Revolution

Author: Chuck Ballard

Publisher: IBM Redbooks

Published: 2012-05-02

Total Pages: 456

ISBN-13: 0738436151

DOWNLOAD EBOOK

In this IBM® Redbooks® publication, we discuss and describe the positioning, functions, capabilities, and advanced programming techniques for IBM InfoSphereTM Streams (V2), a new paradigm and key component of IBM Big Data platform. Data has traditionally been stored in files or databases, and then analyzed by queries and applications. With stream computing, analysis is performed moment by moment as the data is in motion. In fact, the data might never be stored (perhaps only the analytic results). The ability to analyze data in motion is called real-time analytic processing (RTAP). IBM InfoSphere Streams takes a fundamentally different approach to Big Data analytics and differentiates itself with its distributed runtime platform, programming model, and tools for developing and debugging analytic applications that have a high volume and variety of data types. Using in-memory techniques and analyzing record by record enables high velocity. Volume, variety and velocity are the key attributes of Big Data. The data streams that are consumable by IBM InfoSphere Streams can originate from sensors, cameras, news feeds, stock tickers, and a variety of other sources, including traditional databases. It provides an execution platform and services for applications that ingest, filter, analyze, and correlate potentially massive volumes of continuous data streams. This book is intended for professionals that require an understanding of how to process high volumes of streaming data or need information about how to implement systems to satisfy those requirements. See: http://www.redbooks.ibm.com/abstracts/sg247865.html for the IBM InfoSphere Streams (V1) release.


IBM InfoSphere Streams: Accelerating Deployments with Analytic Accelerators

IBM InfoSphere Streams: Accelerating Deployments with Analytic Accelerators

Author: Chuck Ballard

Publisher: IBM Redbooks

Published: 2014-02-07

Total Pages: 556

ISBN-13: 0738439193

DOWNLOAD EBOOK

This IBM® Redbooks® publication describes visual development, visualization, adapters, analytics, and accelerators for IBM InfoSphere® Streams (V3), a key component of the IBM Big Data platform. Streams was designed to analyze data in motion, and can perform analysis on incredibly high volumes with high velocity, using a wide variety of analytic functions and data types. The Visual Development environment extends Streams Studio with drag-and-drop development, provides round tripping with existing text editors, and is ideal for rapid prototyping. Adapters facilitate getting data in and out of Streams, and V3 supports WebSphere MQ, Apache Hadoop Distributed File System, and IBM InfoSphere DataStage. Significant analytics include the native Streams Processing Language, SPSS Modeler analytics, Complex Event Processing, TimeSeries Toolkit for machine learning and predictive analytics, Geospatial Toolkit for location-based applications, and Annotation Query Language for natural language processing applications. Accelerators for Social Media Analysis and Telecommunications Event Data Analysis sample programs can be modified to build production level applications. Want to learn how to analyze high volumes of streaming data or implement systems requiring high performance across nodes in a cluster? Then this book is for you.


Addressing Data Volume, Velocity, and Variety with IBM InfoSphere Streams V3.0

Addressing Data Volume, Velocity, and Variety with IBM InfoSphere Streams V3.0

Author: Mike Ebbers

Publisher: IBM Redbooks

Published: 2013-03-12

Total Pages: 326

ISBN-13: 0738437808

DOWNLOAD EBOOK

There are multiple uses for big data in every industry—from analyzing larger volumes of data than was previously possible to driving more precise answers, to analyzing data at rest and data in motion to capture opportunities that were previously lost. A big data platform will enable your organization to tackle complex problems that previously could not be solved using traditional infrastructure. As the amount of data available to enterprises and other organizations dramatically increases, more and more companies are looking to turn this data into actionable information and intelligence in real time. Addressing these requirements requires applications that are able to analyze potentially enormous volumes and varieties of continuous data streams to provide decision makers with critical information almost instantaneously. IBM® InfoSphere® Streams provides a development platform and runtime environment where you can develop applications that ingest, filter, analyze, and correlate potentially massive volumes of continuous data streams based on defined, proven, and analytical rules that alert you to take appropriate action, all within an appropriate time frame for your organization. This IBM Redbooks® publication is written for decision-makers, consultants, IT architects, and IT professionals who will be implementing a solution with IBM InfoSphere Streams.


Fundamentals of Stream Processing

Fundamentals of Stream Processing

Author: Henrique C. M. Andrade

Publisher: Cambridge University Press

Published: 2014-02-13

Total Pages: 559

ISBN-13: 1107015545

DOWNLOAD EBOOK

This book teaches fundamentals of stream processing, covering application design, distributed systems infrastructure, and continuous analytic algorithms.


Big Data 2.0 Processing Systems

Big Data 2.0 Processing Systems

Author: Sherif Sakr

Publisher: Springer Nature

Published: 2020-07-09

Total Pages: 145

ISBN-13: 3030441873

DOWNLOAD EBOOK

This book provides readers the “big picture” and a comprehensive survey of the domain of big data processing systems. For the past decade, the Hadoop framework has dominated the world of big data processing, yet recently academia and industry have started to recognize its limitations in several application domains and thus, it is now gradually being replaced by a collection of engines that are dedicated to specific verticals (e.g. structured data, graph data, and streaming data). The book explores this new wave of systems, which it refers to as Big Data 2.0 processing systems. After Chapter 1 presents the general background of the big data phenomena, Chapter 2 provides an overview of various general-purpose big data processing systems that allow their users to develop various big data processing jobs for different application domains. In turn, Chapter 3 examines various systems that have been introduced to support the SQL flavor on top of the Hadoop infrastructure and provide competing and scalable performance in the processing of large-scale structured data. Chapter 4 discusses several systems that have been designed to tackle the problem of large-scale graph processing, while the main focus of Chapter 5 is on several systems that have been designed to provide scalable solutions for processing big data streams, and on other sets of systems that have been introduced to support the development of data pipelines between various types of big data processing jobs and systems. Next, Chapter 6 focuses on covering the emerging frameworks and systems in the domain of scalable machine learning and deep learning processing. Lastly, Chapter 7 shares conclusions and an outlook on future research challenges. This new and considerably enlarged second edition not only contains the completely new chapter 6, but also offers a refreshed content for the state-of-the-art in all domains of big data processing over the last years. Overall, the book offers a valuable reference guide for professional, students, and researchers in the domain of big data processing systems. Further, its comprehensive content will hopefully encourage readers to pursue further research on the subject.


Data Warehousing in the Age of Big Data

Data Warehousing in the Age of Big Data

Author: Krish Krishnan

Publisher: Newnes

Published: 2013-05-02

Total Pages: 371

ISBN-13: 0124059201

DOWNLOAD EBOOK

Data Warehousing in the Age of the Big Data will help you and your organization make the most of unstructured data with your existing data warehouse. As Big Data continues to revolutionize how we use data, it doesn't have to create more confusion. Expert author Krish Krishnan helps you make sense of how Big Data fits into the world of data warehousing in clear and concise detail. The book is presented in three distinct parts. Part 1 discusses Big Data, its technologies and use cases from early adopters. Part 2 addresses data warehousing, its shortcomings, and new architecture options, workloads, and integration techniques for Big Data and the data warehouse. Part 3 deals with data governance, data visualization, information life-cycle management, data scientists, and implementing a Big Data–ready data warehouse. Extensive appendixes include case studies from vendor implementations and a special segment on how we can build a healthcare information factory. Ultimately, this book will help you navigate through the complex layers of Big Data and data warehousing while providing you information on how to effectively think about using all these technologies and the architectures to design the next-generation data warehouse. - Learn how to leverage Big Data by effectively integrating it into your data warehouse. - Includes real-world examples and use cases that clearly demonstrate Hadoop, NoSQL, HBASE, Hive, and other Big Data technologies - Understand how to optimize and tune your current data warehouse infrastructure and integrate newer infrastructure matching data processing workloads and requirements


Big Data: Concepts, Methodologies, Tools, and Applications

Big Data: Concepts, Methodologies, Tools, and Applications

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2016-04-20

Total Pages: 2523

ISBN-13: 1466698411

DOWNLOAD EBOOK

The digital age has presented an exponential growth in the amount of data available to individuals looking to draw conclusions based on given or collected information across industries. Challenges associated with the analysis, security, sharing, storage, and visualization of large and complex data sets continue to plague data scientists and analysts alike as traditional data processing applications struggle to adequately manage big data. Big Data: Concepts, Methodologies, Tools, and Applications is a multi-volume compendium of research-based perspectives and solutions within the realm of large-scale and complex data sets. Taking a multidisciplinary approach, this publication presents exhaustive coverage of crucial topics in the field of big data including diverse applications, storage solutions, analysis techniques, and methods for searching and transferring large data sets, in addition to security issues. Emphasizing essential research in the field of data science, this publication is an ideal reference source for data analysts, IT professionals, researchers, and academics.


Big Data and Hadoop

Big Data and Hadoop

Author: VK Jain

Publisher: KHANNA PUBLISHING

Published: 2017-01-01

Total Pages: 655

ISBN-13: 938260913X

DOWNLOAD EBOOK

This book introduces you to the Big Data processing techniques addressing but not limited to various BI (business intelligence) requirements, such as reporting, batch analytics, online analytical processing (OLAP), data mining and Warehousing, and predictive analytics. The book has been written on IBMs Platform of Hadoop framework. IBM Infosphere BigInsight has the highest amount of tutorial matter available free of cost on Internet which makes it easy to acquire proficiency in this technique. This therefore becomes highly vunerable coaching materials in easy to learn steps. The book optimally provides the courseware as per MCA and M. Tech Level Syllabi of most of the Universities. All components of big Data Platform like Jaql, Hive Pig, Sqoop, Flume , Hadoop Streaming, Oozie: HBase, HDFS, FlumeNG, Whirr, Cloudera, Fuse , Zookeeper and Mahout: Machine learning for Hadoop has been discussed in sufficient Detail with hands on Exercises on each.


Real-Time & Stream Data Management

Real-Time & Stream Data Management

Author: Wolfram Wingerath

Publisher: Springer

Published: 2019-01-02

Total Pages: 84

ISBN-13: 3030105555

DOWNLOAD EBOOK

While traditional databases excel at complex queries over historical data, they are inherently pull-based and therefore ill-equipped to push new information to clients. Systems for data stream management and processing, on the other hand, are natively pushoriented and thus facilitate reactive behavior. However, they do not retain data indefinitely and are therefore not able to answer historical queries. The book provides an overview over the different (push-based) mechanisms for data retrieval in each system class and the semantic differences between them. It also provides a comprehensive overview over the current state of the art in real-time databases. It sfirst includes an in-depth system survey of today's real-time databases: Firebase, Meteor, RethinkDB, Parse, Baqend, and others. Second, the high-level classification scheme illustrated above provides a gentle introduction into the system space of data management: Abstracting from the extreme system diversity in this field, it helps readers build a mental model of the available options.