Hyperspectral Data Compression

Hyperspectral Data Compression

Author: Giovanni Motta

Publisher: Springer Science & Business Media

Published: 2006-06-03

Total Pages: 422

ISBN-13: 0387286004

DOWNLOAD EBOOK

Hyperspectral Data Compression provides a survey of recent results in the field of compression of remote sensed 3D data, with a particular interest in hyperspectral imagery. Chapter 1 addresses compression architecture, and reviews and compares compression methods. Chapters 2 through 4 focus on lossless compression (where the decompressed image must be bit for bit identical to the original). Chapter 5, contributed by the editors, describes a lossless algorithm based on vector quantization with extensions to near lossless and possibly lossy compression for efficient browning and pure pixel classification. Chapter 6 deals with near lossless compression while. Chapter 7 considers lossy techniques constrained by almost perfect classification. Chapters 8 through 12 address lossy compression of hyperspectral imagery, where there is a tradeoff between compression achieved and the quality of the decompressed image. Chapter 13 examines artifacts that can arise from lossy compression.


Hyperspectral Data Processing

Hyperspectral Data Processing

Author: Chein-I Chang

Publisher: John Wiley & Sons

Published: 2013-02-01

Total Pages: 1180

ISBN-13: 1118269772

DOWNLOAD EBOOK

Hyperspectral Data Processing: Algorithm Design and Analysis is a culmination of the research conducted in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. Specifically, it treats hyperspectral image processing and hyperspectral signal processing as separate subjects in two different categories. Most materials covered in this book can be used in conjunction with the author’s first book, Hyperspectral Imaging: Techniques for Spectral Detection and Classification, without much overlap. Many results in this book are either new or have not been explored, presented, or published in the public domain. These include various aspects of endmember extraction, unsupervised linear spectral mixture analysis, hyperspectral information compression, hyperspectral signal coding and characterization, as well as applications to conceal target detection, multispectral imaging, and magnetic resonance imaging. Hyperspectral Data Processing contains eight major sections: Part I: provides fundamentals of hyperspectral data processing Part II: offers various algorithm designs for endmember extraction Part III: derives theory for supervised linear spectral mixture analysis Part IV: designs unsupervised methods for hyperspectral image analysis Part V: explores new concepts on hyperspectral information compression Parts VI & VII: develops techniques for hyperspectral signal coding and characterization Part VIII: presents applications in multispectral imaging and magnetic resonance imaging Hyperspectral Data Processing compiles an algorithm compendium with MATLAB codes in an appendix to help readers implement many important algorithms developed in this book and write their own program codes without relying on software packages. Hyperspectral Data Processing is a valuable reference for those who have been involved with hyperspectral imaging and its techniques, as well those who are new to the subject.


The Future of Hyperspectral Imaging

The Future of Hyperspectral Imaging

Author: Stefano Selci

Publisher: MDPI

Published: 2019-11-20

Total Pages: 220

ISBN-13: 3039218220

DOWNLOAD EBOOK

This book includes some very recent applications and the newest emerging trends of hyper-spectral imaging (HSI). HSI is a very recent and strange beast, a sort of a melting pot of previous techniques and scientific interests, merging and concentrating the efforts of physicists, chemists, botanists, biologists, and physicians, to mention just a few, as well as experts in data crunching and statistical elaboration. For almost a century, scientific observation, from looking to planets and stars down to our own cells and below, could be divided into two main categories: analyzing objects on the basis of their physical dimension (recording size, position, weight, etc. and their variations) or on how the object emits, reflects, or absorbs part of the electromagnetic spectrum, i.e., spectroscopy. While the two aspects have been obviously entangled, instruments and skills have always been clearly distinct from each other. With HSI now available, this is no longer the case. This instrument can return specimen dimensionalities and spectroscopic properties to any single pixel of your specimen, in a single set of data. HSI modality is ubiquitous and scale-invariant enough to be used to mark terrestrial resources on the basis of a land map obtained from satellite observation (actually, the oldest application of this type) or to understand if the cell you are looking at is cancerous or perfectly healthy. For all these reasons, HSI represents one of the most exciting methodologies of the new millennium.


Satellite Data Compression

Satellite Data Compression

Author: Bormin Huang

Publisher: Springer Science & Business Media

Published: 2011-11-25

Total Pages: 312

ISBN-13: 1461411831

DOWNLOAD EBOOK

Satellite Data Compression covers recent progress in compression techniques for multispectral, hyperspectral and ultra spectral data. A survey of recent advances in the fields of satellite communications, remote sensing and geographical information systems is included. Satellite Data Compression, contributed by leaders in this field, is the first book available on satellite data compression. It covers onboard compression methodology and hardware developments in several space agencies. Case studies are presented on recent advances in satellite data compression techniques via various prediction-based, lookup-table-based, transform-based, clustering-based, and projection-based approaches. This book provides valuable information on state-of-the-art satellite data compression technologies for professionals and students who are interested in this topic. Satellite Data Compression is designed for a professional audience comprised of computer scientists working in satellite communications, sensor system design, remote sensing, data receiving, airborne imaging and geographical information systems (GIS). Advanced-level students and academic researchers will also benefit from this book.


Hyperspectral Data Exploitation

Hyperspectral Data Exploitation

Author: Chein-I Chang

Publisher: John Wiley & Sons

Published: 2007-06-11

Total Pages: 442

ISBN-13: 047012461X

DOWNLOAD EBOOK

Authored by a panel of experts in the field, this book focuses on hyperspectral image analysis, systems, and applications. With discussion of application-based projects and case studies, this professional reference will bring you up-to-date on this pervasive technology, wether you are working in the military and defense fields, or in remote sensing technology, geoscience, or agriculture.


Hyperspectral Imaging

Hyperspectral Imaging

Author:

Publisher: Elsevier

Published: 2019-09-29

Total Pages: 802

ISBN-13: 0444639780

DOWNLOAD EBOOK

Hyperspectral Imaging, Volume 32, presents a comprehensive exploration of the different analytical methodologies applied on hyperspectral imaging and a state-of-the-art analysis of applications in different scientific and industrial areas. This book presents, for the first time, a comprehensive collection of the main multivariate algorithms used for hyperspectral image analysis in different fields of application. The benefits, drawbacks and suitability of each are fully discussed, along with examples of their application. Users will find state-of-the art information on the machinery for hyperspectral image acquisition, along with a critical assessment of the usage of hyperspectral imaging in diverse scientific fields. - Provides a comprehensive roadmap of hyperspectral image analysis, with benefits and considerations for each method discussed - Covers state-of-the-art applications in different scientific fields - Discusses the implementation of hyperspectral devices in different environments


Hyperspectral Imaging

Hyperspectral Imaging

Author: Chein-I Chang

Publisher: Springer Science & Business Media

Published: 2013-12-11

Total Pages: 372

ISBN-13: 1441991700

DOWNLOAD EBOOK

Hyperspectral Imaging: Techniques for Spectral Detection and Classification is an outgrowth of the research conducted over the years in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of Maryland, Baltimore County. It explores applications of statistical signal processing to hyperspectral imaging and further develops non-literal (spectral) techniques for subpixel detection and mixed pixel classification. This text is the first of its kind on the topic and can be considered a recipe book offering various techniques for hyperspectral data exploitation. In particular, some known techniques, such as OSP (Orthogonal Subspace Projection) and CEM (Constrained Energy Minimization) that were previously developed in the RSSIPL, are discussed in great detail. This book is self-contained and can serve as a valuable and useful reference for researchers in academia and practitioners in government and industry.


Hyperspectral Image Analysis

Hyperspectral Image Analysis

Author: Saurabh Prasad

Publisher: Springer Nature

Published: 2020-04-27

Total Pages: 464

ISBN-13: 3030386171

DOWNLOAD EBOOK

This book reviews the state of the art in algorithmic approaches addressing the practical challenges that arise with hyperspectral image analysis tasks, with a focus on emerging trends in machine learning and image processing/understanding. It presents advances in deep learning, multiple instance learning, sparse representation based learning, low-dimensional manifold models, anomalous change detection, target recognition, sensor fusion and super-resolution for robust multispectral and hyperspectral image understanding. It presents research from leading international experts who have made foundational contributions in these areas. The book covers a diverse array of applications of multispectral/hyperspectral imagery in the context of these algorithms, including remote sensing, face recognition and biomedicine. This book would be particularly beneficial to graduate students and researchers who are taking advanced courses in (or are working in) the areas of image analysis, machine learning and remote sensing with multi-channel optical imagery. Researchers and professionals in academia and industry working in areas such as electrical engineering, civil and environmental engineering, geosciences and biomedical image processing, who work with multi-channel optical data will find this book useful.


Data Compression

Data Compression

Author: David Salomon

Publisher: Springer Science & Business Media

Published: 2006-05-09

Total Pages: 912

ISBN-13: 0387218327

DOWNLOAD EBOOK

A comprehensive reference for the many different types and methods of compression, including a detailed and helpful taxonomy, an analysis of the most common methods, and discussions on their use and comparative benefits. The presentation is organized into the main branches of the field: run length encoding, statistical methods, dictionary-based methods, image compression, audio compression, and video compression. Detailed descriptions and explanations of the most well- known and frequently used methods are covered in a self-contained fashion, with an accessible style and technical level for specialists and nonspecialists. In short, the book provides an invaluable reference and guide for all computer scientists, computer engineers, electrical engineers, signal/image processing engineers and other scientists needing a comprehensive compilation for a broad range of compression methods.


Graph Spectral Image Processing

Graph Spectral Image Processing

Author: Gene Cheung

Publisher: John Wiley & Sons

Published: 2021-08-31

Total Pages: 322

ISBN-13: 1789450284

DOWNLOAD EBOOK

Graph spectral image processing is the study of imaging data from a graph frequency perspective. Modern image sensors capture a wide range of visual data including high spatial resolution/high bit-depth 2D images and videos, hyperspectral images, light field images and 3D point clouds. The field of graph signal processing – extending traditional Fourier analysis tools such as transforms and wavelets to handle data on irregular graph kernels – provides new flexible computational tools to analyze and process these varied types of imaging data. Recent methods combine graph signal processing ideas with deep neural network architectures for enhanced performances, with robustness and smaller memory requirements. The book is divided into two parts. The first is centered on the fundamentals of graph signal processing theories, including graph filtering, graph learning and graph neural networks. The second part details several imaging applications using graph signal processing tools, including image and video compression, 3D image compression, image restoration, point cloud processing, image segmentation and image classification, as well as the use of graph neural networks for image processing.