Theory of Hypergeometric Functions

Theory of Hypergeometric Functions

Author: Kazuhiko Aomoto

Publisher: Springer Science & Business Media

Published: 2011-05-21

Total Pages: 327

ISBN-13: 4431539387

DOWNLOAD EBOOK

This book presents a geometric theory of complex analytic integrals representing hypergeometric functions of several variables. Starting from an integrand which is a product of powers of polynomials, integrals are explained, in an open affine space, as a pair of twisted de Rham cohomology and its dual over the coefficients of local system. It is shown that hypergeometric integrals generally satisfy a holonomic system of linear differential equations with respect to the coefficients of polynomials and also satisfy a holonomic system of linear difference equations with respect to the exponents. These are deduced from Grothendieck-Deligne’s rational de Rham cohomology on the one hand, and by multidimensional extension of Birkhoff’s classical theory on analytic difference equations on the other.


Hypergeometric Functions and Their Applications

Hypergeometric Functions and Their Applications

Author: James B. Seaborn

Publisher: Springer Science & Business Media

Published: 2013-04-09

Total Pages: 261

ISBN-13: 1475754434

DOWNLOAD EBOOK

Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern as well as the clas sical techniques of applied mathematics. This renewal of interest, both in research and teaching, has led to the establishment of the series: Texts in Applied Mathematics (TAM). The development of new courses is a natural consequence of a high level of excitement on the research frontier as newer techniques, such as numerical and symbolic computer systems, dynamical systems, and chaos, mix with and reinforce the traditional methods of applied mathematics. Thus, the purpose of this textbook series is to meet the current and future needs of these advances and encourage the teaching of new courses. TAM will publish textbooks suitable for use in advanced undergraduate and beginning graduate courses, and will complement the Applied Mathe matical Sciences (AMS) series, which will focus on advanced textbooks and research level monographs. Preface A wide range of problems exists in classical and quantum physics, engi neering, and applied mathematics in which special functions arise. The procedure followed in most texts on these topics (e. g. , quantum mechanics, electrodynamics, modern physics, classical mechanics, etc. ) is to formu late the problem as a differential equation that is related to one of several special differential equations (Hermite's, Bessel's, Laguerre's, Legendre's, etc. ).


Basic Hypergeometric Series and Applications

Basic Hypergeometric Series and Applications

Author: Nathan Jacob Fine

Publisher: American Mathematical Soc.

Published: 1988

Total Pages: 142

ISBN-13: 0821815245

DOWNLOAD EBOOK

The theory of partitions, founded by Euler, has led in a natural way to the idea of basic hypergeometric series, also known as Eulerian series. These series were first studied systematically by Heine, but many early results are attributed to Euler, Gauss, and Jacobi. This book provides a simple approach to basic hypergeometric series.


The Confluent Hypergeometric Function

The Confluent Hypergeometric Function

Author: Herbert Buchholz

Publisher: Springer Science & Business Media

Published: 2013-11-22

Total Pages: 255

ISBN-13: 3642883966

DOWNLOAD EBOOK

The subject of this book is the higher transcendental function known as the confluent hypergeometric function. In the last two decades this function has taken on an ever increasing significance because of its use in the application of mathematics to physical and technical problems. There is no doubt that this trend will continue until the general theory of confluent hypergeometric functions becomes familiar to the majority of physicists in much the same way as the cylinder functions, which were previously less well known, are now used in many engineering and physical problems. This book is intended to further this development. The important practical significance of the functions which are treated hardly demands an involved discussion since they include, as special cases, a number of simpler special functions which have long been the everyday tool of the physicist. It is sufficient to mention that these include, among others, the logarithmic integral, the integral sine and cosine, the error integral, the Fresnel integral, the cylinder functions and the cylinder function in parabolic cylindrical coordinates. For anyone who puts forth the effort to study the confluent hypergeometric function in more detail there is the inestimable advantage of being able to understand the properties of other functions derivable from it. This gen eral point of view is particularly useful in connection with series ex pansions valid for values of the argument near zero or infinity and in connection with the various integral representations.


Hypergeometric Functions, My Love

Hypergeometric Functions, My Love

Author: Masaaki Yoshida

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 301

ISBN-13: 3322901661

DOWNLOAD EBOOK

The classical story - of the hypergeometric functions, the configuration space of 4 points on the projective line, elliptic curves, elliptic modular functions and the theta functions - now evolves, in this book, to the story of hypergeometric funktions in 4 variables, the configuration space of 6 points in the projective plane, K3 surfaces, theta functions in 4 variables. This modern theory has been established by the author and his collaborators in the 1990's; further development to different aspects is expected. It leads the reader to a fascinating 4-dimensional world. The author tells the story casually and visually in a plain language, starting form elementary level such as equivalence relations, the exponential function, ... Undergraduate students should be able to enjoy the text.


Generalized Hypergeometric Functions

Generalized Hypergeometric Functions

Author: K. Srinivasa Rao

Publisher:

Published: 2018

Total Pages: 0

ISBN-13: 9780750314961

DOWNLOAD EBOOK

"In 1813, Gauss first outlined his studies of the hypergeometric series which has been of great significance in the mathematical modelling of physical phenomena. This detailed monograph outlines the fundamental relationships between the hypergeometric function and special functions. In nine comprehensive chapters, Dr. Rao and Dr. Lakshminarayanan present a unified approach to the study of special functions of mathematics using Group theory. The book offers fresh insight into various aspects of special functions and their relationship, utilizing transformations and group theory and their applications. It will lay the foundation for deeper understanding by both experienced researchers and novice students." -- Prové de l'editor.


Generalized Hypergeometric Functions

Generalized Hypergeometric Functions

Author: Bernard M. Dwork

Publisher:

Published: 1990

Total Pages: 206

ISBN-13:

DOWNLOAD EBOOK

This monograph by one of the foremost experts on hypergeometric functions is concerned with the Boyarsky principle, developing a theory which is broad enough to encompass several of the most important hypergeometric functions.