Hydraulic Modeling

Hydraulic Modeling

Author: R. Ettema

Publisher: Amer Society of Civil Engineers

Published: 2000

Total Pages: 390

ISBN-13: 9780784404157

DOWNLOAD EBOOK

MOP 97 presents the ideas behind model design and use for a broad spectrum of hydraulic modeling methods.


Hydraulic Modeling

Hydraulic Modeling

Author: Victor M. Lyatkher

Publisher: John Wiley & Sons

Published: 2016-04-20

Total Pages: 608

ISBN-13: 1118946200

DOWNLOAD EBOOK

Water. Except for air, it is the most important ingredient to all life on Earth. It surrounds us every day. We are literally bathed in it, we cook our food with it, and we need a steady stream of it in our bodies every single day just to survive. But water, and the study of it, is one of the most important and unheralded branches of engineering, affecting every other aspect of engineering in almost every industry. We harness its power for energy, we inject massive blasts of it into the earth to extract oil, gas, and minerals, and we use it in nearly every single industrial application, including food processing, refining, manufacturing, and waste disposal, just to name a few. Hyraulic modeling is, essentially, the understanding and prediction of fluid flow and its applications in industrial, municipal, and environmental settings, whether in a creekbed, locked in the pores of rocks deep in the earth, or in the ocean. Mathematical models, which started out with mechanical pencils and drafting tables originally, have been increasingly relied upon over the last few decades, due to the invention, growth, and refinement of computers. Physical modeling, however, is still practiced in laboratories, and it is the intersection of physical and mathematical modeling of fluid flow that is most successful in creating models that are safer, less costly, and are better for the environment. Hydraulic Modeling introduces and explores this incredibly important science, from the most basic tenets to valuable real-world applications that are used in industry today. It is the only volume on the market to offer a thorough coverage of the subject without adding lots of useless fluff or inapplicable appendices. It is a must-have for any engineer, scientist, or student working with hydraulic modeling, as a daily reference or a textbook.


Theory of Hydraulic Models

Theory of Hydraulic Models

Author: Mehmet Selim Yalin

Publisher:

Published: 1971

Total Pages: 266

ISBN-13: 9780333035573

DOWNLOAD EBOOK

For graduate students, research workers and practising engineers in the design of hydraulic structures and designing water works.


Physical Models and Laboratory Techniques in Coastal Engineering

Physical Models and Laboratory Techniques in Coastal Engineering

Author: Steven A. Hughes

Publisher: World Scientific

Published: 1993

Total Pages: 592

ISBN-13: 9789810215415

DOWNLOAD EBOOK

Laboratory physical models are a valuable tool for coastal engineers. Physical models help us to understand the complex hydrodynamic processes occurring in the nearshore zone and they provide reliable and economic engineering design solutions.This book is about the art and science of physical modeling as applied in coastal engineering. The aim of the book is to consolidate and synthesize into a single text much of the knowledge about physical modeling that has been developed worldwide.This book was written to serve as a graduate-level text for a course in physical modeling or as a reference text for engineers and researchers engaged in physical modeling and laboratory experimentation. The first three chapters serve as an introduction to similitude and physical models, covering topics such as advantages and disadvantages of physical models, systems of units, dimensional analysis, types of similitude and various hydraulic similitude criteria applicable to coastal engineering models.Practical application of similitude principles to coastal engineering studies is covered in Chapter 4 (Hydrodynamic Models), Chapter 5 (Coastal Structure Models) and Chapter 6 (Sediment Transport Models). These chapters develop the appropriate similitude criteria, discuss inherent laboratory and scale effects and overview the technical literature pertaining to these types of models. The final two chapters focus on the related subjects of laboratory wave generation (Chapter 7) and measurement and analysis techniques (Chapter 8).