First published in 1992, this wide-ranging volume features 44 articles from 89 contributors on issues of and solutions to modelling of coastal waters around the world in response to an increasing interest in the development and application of numerical hydraulic models as design and management tools. The contributors advise on areas including tidal current modelling, water quality modelling, sediment transport modelling, wave kinematics and computational methods, along with two keynote articles. The main aim of the conference and its resulting volume was to provide a forum whereby engineers, scientists and planners involved in multi-disciplinary models could collaborate and share their expertise. The counterpart to this book is Hydraulic and Environmental Modelling: Estuarine and River Waters.
First published in 1992, this is the second of two volumes on recent advances in the field of hydraulic and environmental modelling, with invited and refereed contributions from an international group of engineers, scientists and planners involved in application, research and development. It covers the estuarine and river waters with parts devoted to: flow processes; flow modelling; salinity intrusion modelling; water quality modelling; sediment transport modelling; expert systems. The first volume covers coastal waters. With the continually increasing interest in the development and application of numerical hydraulic models, their value is especially evident as tools of design and management for flow, pollutant and sediment transport simulation studies in various environments. The readership includes practising engineers and scientists in the water industry, consulting engineers, water companies and the NRA and other government departments, university and polytechnic libraries, staff and students and all other members of the water engineering profession.
First published in 1992, this is the second of two volumes on recent advances in the field of hydraulic and environmental modelling, with invited and refereed contributions from an international group of engineers, scientists and planners involved in application, research and development. It covers the estuarine and river waters with parts devoted to: flow processes; flow modelling; salinity intrusion modelling; water quality modelling; sediment transport modelling; expert systems. The first volume covers coastal waters. With the continually increasing interest in the development and application of numerical hydraulic models, their value is especially evident as tools of design and management for flow, pollutant and sediment transport simulation studies in various environments. The readership includes practising engineers and scientists in the water industry, consulting engineers, water companies and the NRA and other government departments, university and polytechnic libraries, staff and students and all other members of the water engineering profession.
First published in 1992, this is the second of two volumes on recent advances in the field of hydraulic and environmental modelling, with invited and refereed contributions from an international group of engineers, scientists and planners involved in application, research and development. It covers the estuarine and river waters with parts devoted to: flow processes; flow modelling; salinity intrusion modelling; water quality modelling; sediment transport modelling; expert systems. The first volume covers coastal waters. With the continually increasing interest in the development and application of numerical hydraulic models, their value is especially evident as tools of design and management for flow, pollutant and sediment transport simulation studies in various environments. The readership includes practising engineers and scientists in the water industry, consulting engineers, water companies and the NRA and other government departments, university and polytechnic libraries, staff and students and all other members of the water engineering profession.
First published in 1992, this wide-ranging volume features 44 articles from 89 contributors on issues of and solutions to modelling of coastal waters around the world in response to an increasing interest in the development and application of numerical hydraulic models as design and management tools. The contributors advise on areas including tidal current modelling, water quality modelling, sediment transport modelling, wave kinematics and computational methods, along with two keynote articles. The main aim of the conference and its resulting volume was to provide a forum whereby engineers, scientists and planners involved in multi-disciplinary models could collaborate and share their expertise. The counterpart to this book is Hydraulic and Environmental Modelling: Estuarine and River Waters.
Flooding accounts for one-third of natural disasters worldwide and for over half the deaths which occur as a result of natural disasters. As the frequency and volume of flooding increases, as a result of climate change, there is a new urgency amongst researchers and professionals working in flood risk management. River Basin Modelling for Flood Risk Mitigation brings together thirty edited papers by leading experts who gathered for the European Union’s Advanced Study Course at the University of Birmingham, UK. The scope of the course ranged from issues concerning the protection of life, to river restoration and wetland management. A variety of topics is covered in the book including climate change, hydro-informatics, hydro-meterology, river flow forecasting systems and dam-break modelling. The approach is broad, but integrated, providing an attractive and informative package that will satisfy researchers and professionals, while offering a sound introduction to students in Engineering and Geography.
Overland flow modelling has been an active field of research for some years, but developments in numerical methods and computational resources have recently accelerated progress, producing models for different geometries and types of flows, such as simulations of canal and river networks. Flow in canals has traditionally been described using one-dimensional, depth-averaged, shallow water models; but a variety of simulation techniques now facilitate the management of hydrodynamic systems, providing models which incorporate complex geometry and diverse flows. Much effort has gone into elaborating canal operational rules based on decision support systems, with the dual aim of assuring water delivery and meeting flow control constraints. In natural water courses, water management problems are associated with the need to meet quality standards. Numerical modelling of advection-diffusion can be used to manage problems related to the movement of solutes in rivers and aquifers. The analysis of solute transport is used to safeguard the quality of surface and ground water and to help prevent eutrophication. Solute flow through the soil can be dynamically linked to overland flow for hydrological and agricultural applications. Advances in modelling also cast new light on sediment transport in rivers, exploring the complex dynamics of river bed erosion and deposition and assist in thee analysis of river-reservoir systems. All these issues are discussed in Numerical Modelling of Hydrodynamics for Water Resources, which will be useful to civil engineers, applied mathematicians, hydrologists, and physicists.
Practical Channel Hydraulics is a technical guide for estimating flood water levels in rivers using the innovative software known as the Conveyance and Afflux Estimation System (CES-AES). The stand alone software is freely available at HR Wallingford’s website www.river-conveyance.net. The conveyance engine has also been embedded within industry standard river modelling software such as InfoWorks RS and Flood Modeller Pro. This 2nd Edition has been greatly expanded through the addition of Chapters 6-8, which now supply the background to the Shiono and Knight Method (SKM), upon which the CES-AES is largely based. With the need to estimate river levels more accurately, computational methods are now frequently embedded in flood risk management procedures, as for example in ISO 18320 (‘Determination of the stage-discharge relationship’), in which both the SKM and CES feature. The CES-AES incorporates five main components: A Roughness Adviser, A Conveyance Generator, an Uncertainty Estimator, a Backwater Module and an Afflux Estimator. The SKM provides an alternative approach, solving the governing equation analytically or numerically using Excel, or with the short FORTRAN program provided. Special attention is paid to calculating the distributions of boundary shear stress distributions in channels of different shape, and to appropriate formulations for resistance and drag forces, including those on trees in floodplains. Worked examples are given for flows in a wide range of channel types (size, shape, cover, sinuosity), ranging from small scale laboratory flumes (Q = 2.0 1s-1) to European rivers (~2,000 m3s-1), and large-scale world rivers (> 23,000 m3s-1), a ~ 107 range in discharge. Sites from rivers in the UK, France, China, New Zealand and Ecuador are considered. Topics are introduced initially at a simplified level, and get progressively more complex in later chapters. This book is intended for post graduate level students and practising engineers or hydrologists engaged in flood risk management, as well as those who may simply just wish to learn more about modelling flows in rivers.