Hybrid Quantum Systems

Hybrid Quantum Systems

Author: Yoshiro Hirayama

Publisher: Springer Nature

Published: 2022-01-06

Total Pages: 352

ISBN-13: 9811666792

DOWNLOAD EBOOK

This book presents state-of-the-art research on quantum hybridization, manipulation, and measurement in the context of hybrid quantum systems. It covers a broad range of experimental and theoretical topics relevant to quantum hybridization, manipulation, and measurement technologies, including a magnetic field sensor based on spin qubits in diamond NV centers, coherently coupled superconductor qubits, novel coherent couplings between electron and nuclear spin, photons and phonons, and coherent coupling of atoms and photons. Each topic is concisely described by an expert at the forefront of the field, helping readers quickly catch up on the latest advances in fundamental sciences and technologies of hybrid quantum systems, while also providing an essential overview.


Cavity Optomechanics

Cavity Optomechanics

Author: Markus Aspelmeyer

Publisher: Springer

Published: 2014-07-05

Total Pages: 358

ISBN-13: 3642553125

DOWNLOAD EBOOK

During the last few years cavity-optomechanics has emerged as a new field of research. This highly interdisciplinary field studies the interaction between micro and nano mechanical systems and light. Possible applications range from novel high-bandwidth mechanical sensing devices through the generation of squeezed optical or mechanical states to even tests of quantum theory itself. This is one of the first books in this relatively young field. It is aimed at scientists, engineers and students who want to obtain a concise introduction to the state of the art in the field of cavity optomechanics. It is valuable to researchers in nano science, quantum optics, quantum information, gravitational wave detection and other cutting edge fields. Possible applications include biological sensing, frequency comb applications, silicon photonics etc. The technical content will be accessible to those who have familiarity with basic undergraduate physics.


Hybrid quantum system based on rare earth doped crystals

Hybrid quantum system based on rare earth doped crystals

Author: Probst, Sebastian

Publisher: KIT Scientific Publishing

Published: 2016-09-05

Total Pages: 156

ISBN-13: 373150345X

DOWNLOAD EBOOK

Hybrid quantum circuits interfacing rare earth spin ensembles with microwave resonators are a promising approach for application as coherent quantum memory and frequency converter. In this thesis, hybrid circuits based on Er and Nd ions doped into Y?SiO? and YAlO? crystals are investigated by optical and on-chip microwave spectroscopy. Coherent strong coupling between the microwave resonator and spin ensemble as well as a multimode memory for weak coherent microwave pulses are demonstrated.


Hybrid Quantum Metaheuristics

Hybrid Quantum Metaheuristics

Author: Siddhartha Bhattacharya

Publisher:

Published: 2022

Total Pages: 0

ISBN-13: 9781032254616

DOWNLOAD EBOOK

The text discusses several hybrid quantum metaheuristics to efficiently analyses diverse engineering problems. It will be an ideal reference text for graduate students and professional in the field of electrical engineering, electronics and communications engineering, and computer science engineering.


Quantum Materials

Quantum Materials

Author: Detlef Heitmann

Publisher:

Published: 2010

Total Pages:

ISBN-13: 9783642105548

DOWNLOAD EBOOK

Semiconductor nanostructures are ideal systems to tailor the physical properties via quantum effects, utilizing special growth techniques, self-assembling, wet chemical processes or lithographic tools in combination with tuneable external electric and magnetic fields. Such systems are called "Quantum Materials".The electronic, photonic, and phononic properties of these systems are governed by size quantization and discrete energy levels. The charging is controlled by the Coulomb blockade. The spin can be manipulated by the geometrical structure, external gates and by integrating hybrid ferromagnetic emitters.This book reviews sophisticated preparation methods for quantum materials based on III-V and II-VI semiconductors and a wide variety of experimental techniques for the investigation of these interesting systems. It highlights selected experiments and theoretical concepts and gives such a state-of-the-art overview about the wide field of physics and chemistry that can be studied in these systems.


Quantum Hybrid Electronics and Materials

Quantum Hybrid Electronics and Materials

Author: Yoshiro Hirayama

Publisher: Springer Nature

Published: 2022-05-03

Total Pages: 347

ISBN-13: 9811912017

DOWNLOAD EBOOK

This book highlights recent advances in quantum control technologies with regard to hybrid quantum systems. It addresses the following topics: phonon engineering based on phononic crystals, carbon-based nano materials like graphene and nanotubes, Terahertz light technology for single-molecule and quantum dots, nuclear-spin-based metrology for semiconductor quantum systems, quantum anomalous Hall effect in magnetic topological insulators, chiral three-dimensional photonic crystals, and bio-inspired magnonic systems. Each topic, as a component in the framework of hybrid quantum systems, is concisely presented by experts at the forefront of the field. Accordingly, the book offers a valuable asset, and will help readers find advanced technologies and materials suitable for their purposes.


Hybrid Quantum Metaheuristics

Hybrid Quantum Metaheuristics

Author: Siddhartha Bhattacharyya

Publisher: CRC Press

Published: 2022-05-07

Total Pages: 276

ISBN-13: 1000578151

DOWNLOAD EBOOK

The reference text introduces the principles of quantum mechanics to evolve hybrid metaheuristics-based optimization techniques useful for real world engineering and scientific problems. The text covers advances and trends in methodological approaches, theoretical studies, mathematical and applied techniques related to hybrid quantum metaheuristics and their applications to engineering problems. The book will be accompanied by additional resources including video demonstration for each chapter. It will be a useful text for graduate students and professional in the field of electrical engineering, electronics and communications engineering, and computer science engineering, this text: Discusses quantum mechanical principles in detail. Emphasizes the recent and upcoming hybrid quantum metaheuristics in a comprehensive manner. Provides comparative statistical test analysis with conventional hybrid metaheuristics. Highlights real-life case studies, applications, and video demonstrations.


Manipulating Quantum Systems

Manipulating Quantum Systems

Author: National Academies of Sciences, Engineering, and Medicine

Publisher: National Academies Press

Published: 2020-10-14

Total Pages: 315

ISBN-13: 0309499518

DOWNLOAD EBOOK

The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.


Ensembles on Configuration Space

Ensembles on Configuration Space

Author: Michael J. W. Hall

Publisher: Springer

Published: 2016-06-11

Total Pages: 284

ISBN-13: 3319341669

DOWNLOAD EBOOK

This book describes a promising approach to problems in the foundations of quantum mechanics, including the measurement problem. The dynamics of ensembles on configuration space is shown here to be a valuable tool for unifying the formalisms of classical and quantum mechanics, for deriving and extending the latter in various ways, and for addressing the quantum measurement problem. A description of physical systems by means of ensembles on configuration space can be introduced at a very fundamental level: the basic building blocks are a configuration space, probabilities, and Hamiltonian equations of motion for the probabilities. The formalism can describe both classical and quantum systems, and their thermodynamics, with the main difference being the choice of ensemble Hamiltonian. Furthermore, there is a natural way of introducing ensemble Hamiltonians that describe the evolution of hybrid systems; i.e., interacting systems that have distinct classical and quantum sectors, allowing for consistent descriptions of quantum systems interacting with classical measurement devices and quantum matter fields interacting gravitationally with a classical spacetime.


Thermodynamics and Control of Open Quantum Systems

Thermodynamics and Control of Open Quantum Systems

Author: Gershon Kurizki

Publisher: Cambridge University Press

Published: 2022-01-13

Total Pages: 487

ISBN-13: 1107175410

DOWNLOAD EBOOK

The theory of open quantum systems is developed from first principles, and a detailed discussion of real quantum devices is also covered. This unique and self-contained book is accessible to graduate students and researchers working in atomic physics, quantum information, condensed matter physics, and quantum chemistry.