Hybrid Additive Manufacturing

Hybrid Additive Manufacturing

Author: Guha Manogharan

Publisher: Academic Press

Published: 2020-07

Total Pages: 350

ISBN-13: 9780128181706

DOWNLOAD EBOOK

Hybrid Additive Manufacturing: Techniques, Applications and Benefits explains the fundamentals of hybrid AM, definitions, classifications, and principles, as well as key techniques of hybrid AM, its applications, design guidelines, and benefits, with emphasis on key aspects of the system integration process. The core of this subject is in describing how to overcome inherent processing limitations of layer-by-layer AM through the integration of secondary post-processing such as machining or heat treatment. As a result hybrid AM plays a critical role in accelerating the adoption of AM in established design and manufacturing activities. The applications of hybrid AM in both metals and polymers are discussed in this book, as are geometrical dimensioning and tolerancing, material property enhancement, non-traditional surface finishing, in-situ sequential hybrid processing, and integrated process planning. This book will serve not only as an introduction to hybrid AM but also as a handbook for researchers and engineers in mechanical, manufacturing, industrial, electronics, and materials science, thanks to its interdisciplinary approach and detailed case studies. Explains how hybrid manufacturing processes can be used to achieve enhanced material properties and functionality Describes the significance of hybrid additive manufacturing to different parts of the process chain Uses case studies to show how innovative companies are using this technology, how they have overcome challenges they encountered, and the benefits they have experienced


Hybrid Metal Additive Manufacturing

Hybrid Metal Additive Manufacturing

Author: Parnika Shrivastava

Publisher: CRC Press

Published: 2023-12-05

Total Pages: 269

ISBN-13: 1003803245

DOWNLOAD EBOOK

The text presents the latest research and development, technical challenges, and future directions in the field of hybrid metal additive manufacturing. It further discusses the modeling of hybrid additive manufacturing processes for metals, hybrid additive manufacturing of composite materials, and low-carbon hybrid additive manufacturing processes. THIS BOOK •Presents cutting-edge advancements and limitations in hybrid additive manufacturing technologies. • Discusses fabrication methods and rapid tooling techniques focusing on metals, composites, and alloys. •Highlights the importance of low-carbon additive manufacturing technologies toward achieving sustainability. •Emphasizes the challenges and solutions for integrating additive manufacturing and Industry 4.0 to enable rapid manufacturing of customized and tailored products. • Covers hybrid additive manufacturing of composite materials and additive manufacturing for fabricating high-hardness components. The text discusses the recent advancements in additive manufacturing of high-hardness components and covers important engineering materials such as metals, alloys, and composites. It further highlights defects and post-processing of hybrid additive manufacturing components, sustainability solutions for hybrid additive manufacturing processes, and recycling of machining waste into metal powder feedstock. It will serve as an ideal reference text for senior undergraduate and graduate students, and researchers in fields including mechanical engineering, aerospace engineering, manufacturing engineering, and production engineering.


Additive Manufacturing Hybrid Processes for Composites Systems

Additive Manufacturing Hybrid Processes for Composites Systems

Author: António Torres Marques

Publisher: Springer Nature

Published: 2020-04-27

Total Pages: 346

ISBN-13: 3030445224

DOWNLOAD EBOOK

This book focuses on the emerging additive manufacturing technology and its applications beyond state-of-the-art, fibre-reinforced thermoplastics. It also discusses the development of a hybrid, integrated process that combines additive and subtractive operations in a single-step platform, allowing CAD-to-Part production with freeform shapes using long or continuous fibre-reinforced thermoplastics. The book covers the entire value chain of this next-generation technology, from part design and materials composition to transformation stages, product evaluation, and end-of-life studies. Moreover, it addresses the following engineering issues: • Design rules for hybrid additive manufacturing; • Thermoplastic compounds for high-temperature and -strength applications; • Advanced extrusion heads and process concepts; • Hybridisation strategies; • Software ecosystems for hAM design, pre-processing, process planning, emulating and multi-axis processing; • 3D path generators for hAM based on a multi-objective optimisation algorithm that matches the recent curved adaptive slicing method with a new transversal scheme; • hAM parameters, real-time monitoring and closed-loop control; • Multiparametric nondestructive testing (NDT) tools customised for FRTP AM parts; • Sustainable manufacturing processes validated by advanced LCA/LCC models.


Additive Manufacturing of Titanium Alloys

Additive Manufacturing of Titanium Alloys

Author: Bhaskar Dutta

Publisher: Butterworth-Heinemann

Published: 2016-06-17

Total Pages: 96

ISBN-13: 0128047836

DOWNLOAD EBOOK

Additive Manufacturing of Titanium Alloys: State of the Art, Challenges and Opportunities provides alternative methods to the conventional approach for the fabrication of the majority of titanium components produced via the cast and wrought technique, a process which involves a considerable amount of expensive machining. In contrast, the Additive Manufacturing (AM) approach allows very close to final part configuration to be directly fabricated minimizing machining cost, while achieving mechanical properties at least at cast and wrought levels. In addition, the book offers the benefit of significant savings through better material utilization for parts with high buy-to-fly ratios (ratio of initial stock mass to final part mass before and after manufacturing). As titanium additive manufacturing has attracted considerable attention from both academicians and technologists, and has already led to many applications in aerospace and terrestrial systems, as well as in the medical industry, this book explores the unique shape making capabilities and attractive mechanical properties which make titanium an ideal material for the additive manufacturing industry. - Includes coverage of the fundamentals of microstructural evolution in titanium alloys - Introduces readers to the various Additive Manufacturing Technologies, such as Powder Bed Fusion (PBF) and Directed Energy Deposition (DED) - Looks at the future of Titanium Additive Manufacturing - Provides a complete review of the science, technology, and applications of Titanium Additive Manufacturing (AM)


Additive Manufacturing Technologies

Additive Manufacturing Technologies

Author: Ian Gibson

Publisher: Springer Nature

Published: 2020-11-10

Total Pages: 685

ISBN-13: 3030561275

DOWNLOAD EBOOK

This textbook covers in detail digitally-driven methods for adding materials together to form parts. A conceptual overview of additive manufacturing is given, beginning with the fundamentals so that readers can get up to speed quickly. Well-established and emerging applications such as rapid prototyping, micro-scale manufacturing, medical applications, aerospace manufacturing, rapid tooling and direct digital manufacturing are also discussed. This book provides a comprehensive overview of additive manufacturing technologies as well as relevant supporting technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems. Reflects recent developments and trends and adheres to the ASTM, SI and other standards; Includes chapters on topics that span the entire AM value chain, including process selection, software, post-processing, industrial drivers for AM, and more; Provides a broad range of technical questions to ensure comprehensive understanding of the concepts covered.


Additive Manufacturing of Metals

Additive Manufacturing of Metals

Author: John O. Milewski

Publisher: Springer

Published: 2017-06-28

Total Pages: 351

ISBN-13: 3319582054

DOWNLOAD EBOOK

This engaging volume presents the exciting new technology of additive manufacturing (AM) of metal objects for a broad audience of academic and industry researchers, manufacturing professionals, undergraduate and graduate students, hobbyists, and artists. Innovative applications ranging from rocket nozzles to custom jewelry to medical implants illustrate a new world of freedom in design and fabrication, creating objects otherwise not possible by conventional means. The author describes the various methods and advanced metals used to create high value components, enabling readers to choose which process is best for them. Of particular interest is how harnessing the power of lasers, electron beams, and electric arcs, as directed by advanced computer models, robots, and 3D printing systems, can create otherwise unattainable objects. A timeline depicting the evolution of metalworking, accelerated by the computer and information age, ties AM metal technology to the rapid evolution of global technology trends. Charts, diagrams, and illustrations complement the text to describe the diverse set of technologies brought together in the AM processing of metal. Extensive listing of terms, definitions, and acronyms provides the reader with a quick reference guide to the language of AM metal processing. The book directs the reader to a wealth of internet sites providing further reading and resources, such as vendors and service providers, to jump start those interested in taking the first steps to establishing AM metal capability on whatever scale. The appendix provides hands-on example exercises for those ready to engage in experiential self-directed learning.


Mass Production Processes

Mass Production Processes

Author: Anil Akdogan

Publisher: BoD – Books on Demand

Published: 2020-03-11

Total Pages: 214

ISBN-13: 1838802150

DOWNLOAD EBOOK

It is always hard to set manufacturing systems to produce large quantities of standardized parts. Controlling these mass production lines needs deep knowledge, hard experience, and the required related tools as well. The use of modern methods and techniques to produce a large quantity of products within productive manufacturing processes provides improvements in manufacturing costs and product quality. In order to serve these purposes, this book aims to reflect on the advanced manufacturing systems of different alloys in production with related components and automation technologies. Additionally, it focuses on mass production processes designed according to Industry 4.0 considering different kinds of quality and improvement works in mass production systems for high productive and sustainable manufacturing. This book may be interesting to researchers, industrial employees, or any other partners who work for better quality manufacturing at any stage of the mass production processes.


Systems Engineering in the Fourth Industrial Revolution

Systems Engineering in the Fourth Industrial Revolution

Author: Ron S. Kenett

Publisher: John Wiley & Sons

Published: 2019-12-24

Total Pages: 656

ISBN-13: 1119513898

DOWNLOAD EBOOK

An up-to-date guide for using massive amounts of data and novel technologies to design, build, and maintain better systems engineering Systems Engineering in the Fourth Industrial Revolution: Big Data, Novel Technologies, and Modern Systems Engineering offers a guide to the recent changes in systems engineering prompted by the current challenging and innovative industrial environment called the Fourth Industrial Revolution—INDUSTRY 4.0. This book contains advanced models, innovative practices, and state-of-the-art research findings on systems engineering. The contributors, an international panel of experts on the topic, explore the key elements in systems engineering that have shifted towards data collection and analytics, available and used in the design and development of systems and also in the later life-cycle stages of use and retirement. The contributors address the issues in a system in which the system involves data in its operation, contrasting with earlier approaches in which data, models, and algorithms were less involved in the function of the system. The book covers a wide range of topics including five systems engineering domains: systems engineering and systems thinking; systems software and process engineering; the digital factory; reliability and maintainability modeling and analytics; and organizational aspects of systems engineering. This important resource: Presents new and advanced approaches, methodologies, and tools for designing, testing, deploying, and maintaining advanced complex systems Explores effective evidence-based risk management practices Describes an integrated approach to safety, reliability, and cyber security based on system theory Discusses entrepreneurship as a multidisciplinary system Emphasizes technical merits of systems engineering concepts by providing technical models Written for systems engineers, Systems Engineering in the Fourth Industrial Revolution offers an up-to-date resource that contains the best practices and most recent research on the topic of systems engineering.


Additive Manufacturing of Metals: The Technology, Materials, Design and Production

Additive Manufacturing of Metals: The Technology, Materials, Design and Production

Author: Li Yang

Publisher: Springer

Published: 2017-05-11

Total Pages: 172

ISBN-13: 3319551280

DOWNLOAD EBOOK

This book offers a unique guide to the three-dimensional (3D) printing of metals. It covers various aspects of additive, subtractive, and joining processes used to form three-dimensional parts with applications ranging from prototyping to production. Examining a variety of manufacturing technologies and their ability to produce both prototypes and functional production-quality parts, the individual chapters address metal components and discuss some of the important research challenges associated with the use of these technologies. As well as exploring the latest technologies currently under development, the book features unique sections on electron beam melting technology, material lifting, and the importance this science has in the engineering context. Presenting unique real-life case studies from industry, this book is also the first to offer the perspective of engineers who work in the field of aerospace and transportation systems, and who design components and manufacturing networks. Written by the leading experts in this field at universities and in industry, it provides a comprehensive textbook for students and an invaluable guide for practitioners


Metal-Polymer Multi-Material Structures and Manufacturing Techniques in Transportation

Metal-Polymer Multi-Material Structures and Manufacturing Techniques in Transportation

Author: Sergio T. Amancio-Filho

Publisher: MDPI

Published: 2020-12-10

Total Pages: 184

ISBN-13: 3039361503

DOWNLOAD EBOOK

The reduction of greenhouse gas emissions—particularly from fossil fuel-powered vehicles and airplanes by means of weight savings and leaner fuel consumption, helps to restrain environmental impacts. In general, for a variety of industries, and specifically in the case of transport, where both weight savings and increased energy efficiency are pursued, the use of metal–polymer multi-material structures has been growing at an increasing and particularly fast pace in recent years. Several manufacturing techniques have been, or are being, developed, with the aim of being used for producing dissimilar materials in cost-efficient manners. This book presents recent developments in the state of the art of advanced additive manufacturing and the joining of metal–polymer multi-material structures in transportation. This publication mainly focuses on the correlations between microstructure, manufacturing process (i.e., AddJoining, adhesive bonding, friction riveting, friction-based staking and friction spot joining) properties, and the mechanical performance of metal–polymer multi-material structures.