Huygens' Principle and Hyperbolic Equations

Huygens' Principle and Hyperbolic Equations

Author: Gunther Paul

Publisher: Academic Press

Published: 2014-07-14

Total Pages: 908

ISBN-13: 1483262227

DOWNLOAD EBOOK

Huygens' Principle and Hyperbolic Equations is devoted to certain mathematical aspects of wave propagation in curved space-times. The book aims to present special nontrivial Huygens' operators and to describe their individual properties and to characterize these examples of Huygens' operators within certain more or less comprehensive classes of general hyperbolic operators. The materials covered in the book include a treatment of the wave equation for p-forms over a space of constant sectional curvature, the Riesz distributions, the Euler-Poisson-Darboux-equations over a Riemannian manifold, and plane wave manifolds. Physicists will find the book invaluable.


Hyperbolic Partial Differential Equations

Hyperbolic Partial Differential Equations

Author: Peter D. Lax

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 234

ISBN-13: 0821835769

DOWNLOAD EBOOK

The theory of hyperbolic equations is a large subject, and its applications are many: fluid dynamics and aerodynamics, the theory of elasticity, optics, electromagnetic waves, direct and inverse scattering, and the general theory of relativity. This book is an introduction to most facets of the theory and is an ideal text for a second-year graduate course on the subject. The first part deals with the basic theory: the relation of hyperbolicity to the finite propagation of signals, the concept and role of characteristic surfaces and rays, energy, and energy inequalities. The structure of solutions of equations with constant coefficients is explored with the help of the Fourier and Radon transforms. The existence of solutions of equations with variable coefficients with prescribed initial values is proved using energy inequalities. The propagation of singularities is studied with the help of progressing waves. The second part describes finite difference approximations of hyperbolic equations, presents a streamlined version of the Lax-Phillips scattering theory, and covers basic concepts and results for hyperbolic systems of conservation laws, an active research area today. Four brief appendices sketch topics that are important or amusing, such as Huygens' principle and a theory of mixed initial and boundary value problems. A fifth appendix by Cathleen Morawetz describes a nonstandard energy identity and its uses. -- Back cover.


Partial Differential Equations

Partial Differential Equations

Author: Walter A. Strauss

Publisher: John Wiley & Sons

Published: 2007-12-21

Total Pages: 467

ISBN-13: 0470054565

DOWNLOAD EBOOK

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.


Hyperbolic Equations and Related Topics

Hyperbolic Equations and Related Topics

Author: Sigeru Mizohata

Publisher: Academic Press

Published: 2014-05-10

Total Pages: 458

ISBN-13: 1483269256

DOWNLOAD EBOOK

Hyperbolic Equations and Related Topics covers the proceedings of the Taniguchi International Symposium, held in Katata, Japan on August 27-31, 1984 and in Kyoto, Japan on September 3-5, 1984. The book focuses on the mathematical analyses involved in hyperbolic equations. The selection first elaborates on complex vector fields; holomorphic extension of CR functions and related problems; second microlocalization and propagation of singularities for semi-linear hyperbolic equations; and scattering matrix for two convex obstacles. Discussions focus on the construction of asymptotic solutions, singular vector fields and Leibniz formula, second microlocalization along a Lagrangean submanifold, and hypo-analytic structures. The text then ponders on the Cauchy problem for effectively hyperbolic equations and for uniformly diagonalizable hyperbolic systems in Gevrey classes. The book takes a look at generalized Hamilton flows and singularities of solutions of the hyperbolic Cauchy problem and analytic and Gevrey well-posedness of the Cauchy problem for second order weakly hyperbolic equations with coefficients irregular in time. The selection is a dependable reference for researchers interested in hyperbolic equations.


Classical And Quantum Systems: Foundations And Symmetries - Proceedings Of The 2nd International Wigner Symposium

Classical And Quantum Systems: Foundations And Symmetries - Proceedings Of The 2nd International Wigner Symposium

Author: Heinz-dietrich Doebner

Publisher: World Scientific

Published: 1993-01-19

Total Pages: 818

ISBN-13: 9814554391

DOWNLOAD EBOOK

The Wigner Symposium series is focussed on fundamental problems and new developments in physics and their experimental, theoretical and mathematical aspects. Particular emphasis is given to those topics which have developed from the work of Eugene P Wigner. The 2nd Wigner symposium is centered around notions of symmetry and geometry, the foundations of quantum mechanics, quantum optics and particle physics. Other fields like dynamical systems, neural networks and physics of information are also represented.This volume brings together 19 plenary lectures which survey latest developments and more than 130 contributed research reports.


Elliptic Partial Differential Equations

Elliptic Partial Differential Equations

Author: Qing Han

Publisher: American Mathematical Soc.

Published: 2011

Total Pages: 161

ISBN-13: 0821853139

DOWNLOAD EBOOK

This volume is based on PDE courses given by the authors at the Courant Institute and at the University of Notre Dame, Indiana. Presented are basic methods for obtaining various a priori estimates for second-order equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications. The equations considered in the book are linear; however, the presented methods also apply to nonlinear problems.


Partial Differential Equations in Classical Mathematical Physics

Partial Differential Equations in Classical Mathematical Physics

Author: Isaak Rubinstein

Publisher: Cambridge University Press

Published: 1998-04-28

Total Pages: 704

ISBN-13: 9780521558464

DOWNLOAD EBOOK

The unique feature of this book is that it considers the theory of partial differential equations in mathematical physics as the language of continuous processes, that is, as an interdisciplinary science that treats the hierarchy of mathematical phenomena as reflections of their physical counterparts. Special attention is drawn to tracing the development of these mathematical phenomena in different natural sciences, with examples drawn from continuum mechanics, electrodynamics, transport phenomena, thermodynamics, and chemical kinetics. At the same time, the authors trace the interrelation between the different types of problems - elliptic, parabolic, and hyperbolic - as the mathematical counterparts of stationary and evolutionary processes. This combination of mathematical comprehensiveness and natural scientific motivation represents a step forward in the presentation of the classical theory of PDEs, one that will be appreciated by both students and researchers alike.


A Course on Partial Differential Equations

A Course on Partial Differential Equations

Author: Walter Craig

Publisher: American Mathematical Soc.

Published: 2018-12-12

Total Pages: 217

ISBN-13: 1470442922

DOWNLOAD EBOOK

Does entropy really increase no matter what we do? Can light pass through a Big Bang? What is certain about the Heisenberg uncertainty principle? Many laws of physics are formulated in terms of differential equations, and the questions above are about the nature of their solutions. This book puts together the three main aspects of the topic of partial differential equations, namely theory, phenomenology, and applications, from a contemporary point of view. In addition to the three principal examples of the wave equation, the heat equation, and Laplace's equation, the book has chapters on dispersion and the Schrödinger equation, nonlinear hyperbolic conservation laws, and shock waves. The book covers material for an introductory course that is aimed at beginning graduate or advanced undergraduate level students. Readers should be conversant with multivariate calculus and linear algebra. They are also expected to have taken an introductory level course in analysis. Each chapter includes a comprehensive set of exercises, and most chapters have additional projects, which are intended to give students opportunities for more in-depth and open-ended study of solutions of partial differential equations and their properties.


Partial Differential Equations in Action

Partial Differential Equations in Action

Author: Sandro Salsa

Publisher: Springer

Published: 2015-04-24

Total Pages: 714

ISBN-13: 3319150936

DOWNLOAD EBOOK

The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.


Principles of Partial Differential Equations

Principles of Partial Differential Equations

Author: Alexander Komech

Publisher: Springer Science & Business Media

Published: 2009-10-05

Total Pages: 165

ISBN-13: 1441910956

DOWNLOAD EBOOK

This concise book covers the classical tools of Partial Differential Equations Theory in today’s science and engineering. The rigorous theoretical presentation includes many hints, and the book contains many illustrative applications from physics.