A unique source book with flow stress data for hot working, processing maps with metallurgical interpretation and optimum processing conditions for metals, alloys, intermetallics, and metal matrix composites. The use of this book replaces the expensive and time consuming trial and error methods in process design and product development.
Hot Working Guide: A Compendium of Processing Maps, Second Edition is a unique source book with flow stress data for hot working, processing maps with metallurgical interpretation and optimum processing conditions for metals, alloys, intermetallics, and metal matrix composites. The use of this book replaces the expensive and time consuming trial and error methods in process design and product development.
This ASM Handbook is the most comprehensive collection of engineering information on this important structural material published in the last sixty years. Prepared with the cooperation of the International Magnesium Association, it presents the current industrial practices and provides information and data about the properties and performance of magnesium alloys. Materials science and engineering are covered, including processing, properties, and commercial uses.
There is an urgent need to disseminate ergonomics "know-how" to the work place. This book meets that need by providing clear guidelines and problem solving recommendations to assist the practitioner in decisions that directly protect the health, safety and well-being of the worker.The guidelines have evolved from a series of symposia on Ergonomic Guidelines and Problem Solving. Initially experts in each area selected were asked to write draft guidelines. These guidelines were circulated to participants at the symposia and to other experts for review before being comprehensively revised. In some instances these guidelines cannot be considered complete but it is important now to put some recommendations forward as guidelines. It is hoped that as new research emerges each guideline will be updated.Each guideline has been divided into two parts. Part I contains the guidelines for the practitioner and Part II provides the scientific basis or the knowledge for the guide. Such separation of the applied and theoretical content was designed to facilitate rapid incorporation of the guide into practice.The target audience for this book is the practitioner. The practitioner may be a manager, production system designer, shop supervisor, occupational health and safety professional, union representative, labor inspector or production engineer. For each of the guidelines, relevant practitioners are described.Topics covered include work space design, tool design, work-rest schedules, illumination and maintenance.
Working Guide to Petroleum and Natural Gas Production Engineering provides an introduction to key concepts and processes in oil and gas production engineering. It begins by describing correlation and procedures for predicting the physical properties of natural gas and oil. These include compressibility factor and phase behavior, field sampling process and laboratory measurements, and prediction of a vapor-liquid mixture. The book discusses the basic parameters of multiphase fluid flow, various flow regimes, and multiphase flow models. It explains the natural flow performance of oil, gas, and the mixture. The final chapter covers the design, use, function, operation, and maintenance of oil and gas production facilities; the design and construction of separators; and oil and gas separation and treatment systems. - Evaluate well inflow performance - Guide to properties of hydrocarbon mixtures - Evaluate Gas production and processing facilities
Working Guide to Drilling Equipment and Operations offers a practical guide to drilling technologies and procedures. The book begins by introducing basic concepts such as the functions of drilling muds; types of drilling fluids; testing of drilling systems; and completion and workover fluids. This is followed by discussions of the composition of the drill string; air and gas drilling operations; and directional drilling. The book identifies the factors that should be considered for optimized drilling operations: health, safety, and environment; production capability; and drilling implementation. It explains how to control well pressure. It details the process of fishing, i.e. removal of a fish (part of the drill string that separates from the upper remaining portion of the drill string) or junk (small items of non-drillable metals) from the borehole. The remaining chapters cover the different types of casing and casing string design; well cementing; the proper design of tubing; and the environmental aspects of drilling. - Drilling and Production Hoisting Equipment - Hoisting Tool Inspection and Maintenance Procedures - Pump Performance Charts - Rotary Table and Bushings - Rig Maintenance of Drill Collars - Drilling Bits and Downhole Tools
Over the last three decades the process industries have grown very rapidly, with corresponding increases in the quantities of hazardous materials in process, storage or transport. Plants have become larger and are often situated in or close to densely populated areas. Increased hazard of loss of life or property is continually highlighted with incidents such as Flixborough, Bhopal, Chernobyl, Three Mile Island, the Phillips 66 incident, and Piper Alpha to name but a few. The field of Loss Prevention is, and continues to, be of supreme importance to countless companies, municipalities and governments around the world, because of the trend for processing plants to become larger and often be situated in or close to densely populated areas, thus increasing the hazard of loss of life or property. This book is a detailed guidebook to defending against these, and many other, hazards. It could without exaggeration be referred to as the "bible" for the process industries. This is THE standard reference work for chemical and process engineering safety professionals. For years, it has been the most complete collection of information on the theory, practice, design elements, equipment, regulations and laws covering the field of process safety. An entire library of alternative books (and cross-referencing systems) would be needed to replace or improve upon it, but everything of importance to safety professionals, engineers and managers can be found in this all-encompassing reference instead. Frank Lees' world renowned work has been fully revised and expanded by a team of leading chemical and process engineers working under the guidance of one of the world’s chief experts in this field. Sam Mannan is professor of chemical engineering at Texas A&M University, and heads the Mary Kay O’Connor Process Safety Center at Texas A&M. He received his MS and Ph.D. in chemical engineering from the University of Oklahoma, and joined the chemical engineering department at Texas A&M University as a professor in 1997. He has over 20 years of experience as an engineer, working both in industry and academia. New detail is added to chapters on fire safety, engineering, explosion hazards, analysis and suppression, and new appendices feature more recent disasters. The many thousands of references have been updated along with standards and codes of practice issued by authorities in the US, UK/Europe and internationally. In addition to all this, more regulatory relevance and case studies have been included in this edition. Written in a clear and concise style, Loss Prevention in the Process Industries covers traditional areas of personal safety as well as the more technological aspects and thus provides balanced and in-depth coverage of the whole field of safety and loss prevention. * A must-have standard reference for chemical and process engineering safety professionals * The most complete collection of information on the theory, practice, design elements, equipment and laws that pertain to process safety * Only single work to provide everything; principles, practice, codes, standards, data and references needed by those practicing in the field
The only source that focuses exclusively on engineering and technology, this important guide maps the dynamic and changing field of information sources published for engineers in recent years. Lord highlights basic perspectives, access tools, and English-language resources—directories, encyclopedias, yearbooks, dictionaries, databases, indexes, libraries, buyer's guides, Internet resources, and more. Substantial emphasis is placed on digital resources. The author also discusses how engineers and scientists use information, the culture and generation of scientific information, different types of engineering information, and the tools and resources you need to locate and access that material. Other sections describe regulations, standards and specifications, government resources, professional and trade associations, and education and career resources. Engineers, scientists, librarians, and other information professionals working with engineering and technology information will welcome this research