Hot-Melt Extrusion

Hot-Melt Extrusion

Author: Dennis Douroumis

Publisher: John Wiley & Sons

Published: 2012-04-24

Total Pages: 404

ISBN-13: 1118307879

DOWNLOAD EBOOK

Hot-melt extrusion (HME) - melting a substance and forcing it through an orifice under controlled conditions to form a new material - is an emerging processing technology in the pharmaceutical industry for the preparation of various dosage forms and drug delivery systems, for example granules and sustained release tablets. Hot-Melt Extrusion: Pharmaceutical Applications covers the main instrumentation, operation principles and theoretical background of HME. It then focuses on HME drug delivery systems, dosage forms and clinical studies (including pharmacokinetics and bioavailability) of HME products. Finally, the book includes some recent and novel HME applications, scale -up considerations and regulatory issues. Topics covered include: principles and die design of single screw extrusion twin screw extrusion techniques and practices in the laboratory and on production scale HME developments for the pharmaceutical industry solubility parameters for prediction of drug/polymer miscibility in HME formulations the influence of plasticizers in HME applications of polymethacrylate polymers in HME HME of ethylcellulose, hypromellose, and polyethylene oxide bioadhesion properties of polymeric films produced by HME taste masking using HME clinical studies, bioavailability and pharmacokinetics of HME products injection moulding and HME processing for pharmaceutical materials laminar dispersive & distributive mixing with dissolution and applications to HME technological considerations related to scale-up of HME processes devices and implant systems by HME an FDA perspective on HME product and process understanding improved process understanding and control of an HME process with near-infrared spectroscopy Hot-Melt Extrusion: Pharmaceutical Applications is an essential multidisciplinary guide to the emerging pharmaceutical uses of this processing technology for researchers in academia and industry working in drug formulation and delivery, pharmaceutical engineering and processing, and polymers and materials science. This is the first book from our brand new series Advances in Pharmaceutical Technology. Find out more about the series here.


Melt Extrusion

Melt Extrusion

Author: Michael A. Repka

Publisher: Springer Science & Business Media

Published: 2013-10-11

Total Pages: 472

ISBN-13: 1461484324

DOWNLOAD EBOOK

This volume provides readers with the basic principles and fundamentals of extrusion technology and a detailed description of the practical applications of a variety of extrusion processes, including various pharma grade extruders. In addition, the downstream production of films, pellets and tablets, for example, for oral and other delivery routes, are presented and discussed utilizing melt extrusion. This book is the first of its kind that discusses extensively the well-developed science of extrusion technology as applied to pharmaceutical drug product development and manufacturing. By covering a wide range of relevant topics, the text brings together all technical information necessary to develop and market pharmaceutical dosage forms that meet current quality and regulatory requirements. As extrusion technology continues to be refined further, usage of extruder systems and the array of applications will continue to expand, but the core technologies will remain the same.


Hot-melt extrusion with poorly soluble drugs

Hot-melt extrusion with poorly soluble drugs

Author: Jessica Albers

Publisher: Cuvillier Verlag

Published: 2008-08-22

Total Pages: 156

ISBN-13: 3736926979

DOWNLOAD EBOOK

Hot-melt extrusion with poorly soluble drugs is a challenging method to enhance the solubility. The formation of solid dispersions, specifically of glassy solid solutions, wherein the drug is dispersed on a molecular basis in an inert carrier, leads to metastable systems that have advantageous dissolution behaviour but suffer from physical stability problems. To date, there is poor understanding of the solid state structure, the mechanism by which dissolution enhancement occurs, the stability on storage and in dissolution, and the processing to solid dosage forms. The hot-melt extrusion process is influenced by several parameters. The right coordination of these parameters is decisive for the production of solid dispersions and thus, the success in solubility enhancement. The solid state and the viscosity of the extrudates can be controlled by the temperature of the barrels. Besides the configuration of the screw and the temperature profile of the barrel, the design of the die plate represents the third important extrusion parameter. By keeping the dead storage capacity at a minimum, an early solidification and thus a blockage of the dies can be prevented. Due to shear forces evolving in the extruder barrel and the ability of the drug to dissolve in the molten carrier before reaching the melting temperature, the process temperature can be kept below the melting point of the substances. Basic butylated methacrylate copolymer is a suitable carrier to enhance the solubility of the poorly water-soluble drug celecoxib in a hot-melt extrusion process. The best solubility enhancement can be obtained by dispersing the drug in the molten carrier on a molecular basis and thus, to form glassy solid solutions. The solid state characteristics of the solid dispersion can be revealed by DSC analysis and interpretation of the corresponding glass transitions. Such systems may contain a drug load of up to 60% and are stable at increased temperature and humidity which is due to the very low water uptake of the components. Glassy solid solutions of celecoxib and basic butylated methacrylate copolymer have a fast dissolution rate and result in a 58 fold supersaturated solution. The mechanism of drug release from these glassy solid solutions is carrier-controlled and governed by dissolution. The enhancement of the dissolution rate is based on improved solubility and wettability. Basic butylated methacrylate copolymer interacts chemically with celecoxib in an acid-base reaction. The hot-melt extrusion process is highly dependent on the physicochemical properties of the compounds and their miscibility in the molten state. The use of basic butylated methacrylate copolymer as solubility enhancing carrier in hot-melt extrusion cannot be transferred easily to all drugs. Depending on the properties of the drug, specifically the melting point and the pKa, basic butylated methacrylate copolymer can be a useful carrier in glassy solid solution formation, but might be insufficient for solubility improvement. The formation of a glassy solid solution evolves from interactions between the drug and the carrier. Bonds can differ in their strength and can be advantageous or disadvantageous for a fast dissolution. Furthermore, decomposition processes can occur, when processing the drug at high temperatures. Thus, each formulation has to be analyzed separately. The interpretation of the chemical structure, the calculation of solubility parameters, the determination of melting temperatures and enthalpies, and the performance of molecular dynamics simulations are tools to predict the miscibility of drugs and carriers for the formulation of solid dispersions. A combined approach of tools predicting miscibility is highly appropriate, as no single technique may yield all the required information. Nevertheless, the evaluation of the melting behaviour via DSC has the highest impact. Hot-melt extruded glassy solid solutions can be processed into solid dosage forms. The mechanical energy input through milling and zabletting has no influence on the solid-state stability. The solution-state stability can be achieved by adding HPMC to the external phase. The filling of capsules with milled hot-melt extrudates is a promising technique to obtain solid dosage forms from glassy solid solutions. By the extensive analysis of the hot-melt extrusion process, the interactions of the compounds, the thermal characteristics, and the dissolution mechanism of the resulting systems, it is possible to predict the extrusion process in an early stage of development and to improve the dissolution of poorly soluble drugs.


Formulating Poorly Water Soluble Drugs

Formulating Poorly Water Soluble Drugs

Author: Robert O. Williams III

Publisher: Springer Science & Business Media

Published: 2011-12-04

Total Pages: 656

ISBN-13: 1461411440

DOWNLOAD EBOOK

This volume is intended to provide the reader with a breadth of understanding regarding the many challenges faced with the formulation of poorly water-soluble drugs as well as in-depth knowledge in the critical areas of development with these compounds. Further, this book is designed to provide practical guidance for overcoming formulation challenges toward the end goal of improving drug therapies with poorly water-soluble drugs. Enhancing solubility via formulation intervention is a unique opportunity in which formulation scientists can enable drug therapies by creating viable medicines from seemingly undeliverable molecules. With the ever increasing number of poorly water-soluble compounds entering development, the role of the formulation scientist is growing in importance. Also, knowledge of the advanced analytical, formulation, and process technologies as well as specific regulatory considerations related to the formulation of these compounds is increasing in value. Ideally, this book will serve as a useful tool in the education of current and future generations of scientists, and in this context contribute toward providing patients with new and better medicines.


Amorphous Solid Dispersions

Amorphous Solid Dispersions

Author: Navnit Shah

Publisher: Springer

Published: 2014-11-21

Total Pages: 702

ISBN-13: 1493915983

DOWNLOAD EBOOK

This volume offers a comprehensive guide on the theory and practice of amorphous solid dispersions (ASD) for handling challenges associated with poorly soluble drugs. In twenty-three inclusive chapters, the book examines thermodynamics and kinetics of the amorphous state and amorphous solid dispersions, ASD technologies, excipients for stabilizing amorphous solid dispersions such as polymers, and ASD manufacturing technologies, including spray drying, hot melt extrusion, fluid bed layering and solvent-controlled micro-precipitation technology (MBP). Each technology is illustrated by specific case studies. In addition, dedicated sections cover analytical tools and technologies for characterization of amorphous solid dispersions, the prediction of long-term stability, and the development of suitable dissolution methods and regulatory aspects. The book also highlights future technologies on the horizon, such as supercritical fluid processing, mesoporous silica, KinetiSol®, and the use of non-salt-forming organic acids and amino acids for the stabilization of amorphous systems. Amorphous Solid Dispersions: Theory and Practice is a valuable reference to pharmaceutical scientists interested in developing bioavailable and therapeutically effective formulations of poorly soluble molecules in order to advance these technologies and develop better medicines for the future.


Drug Delivery Strategies for Poorly Water-Soluble Drugs

Drug Delivery Strategies for Poorly Water-Soluble Drugs

Author: Dionysios Douroumis

Publisher: John Wiley & Sons

Published: 2012-12-19

Total Pages: 543

ISBN-13: 1118444671

DOWNLOAD EBOOK

Many newly proposed drugs suffer from poor water solubility, thus presenting major hurdles in the design of suitable formulations for administration to patients. Consequently, the development of techniques and materials to overcome these hurdles is a major area of research in pharmaceutical companies. Drug Delivery Strategies for Poorly Water-Soluble Drugs provides a comprehensive overview of currently used formulation strategies for hydrophobic drugs, including liposome formulation, cyclodextrin drug carriers, solid lipid nanoparticles, polymeric drug encapsulation delivery systems, self–microemulsifying drug delivery systems, nanocrystals, hydrosol colloidal dispersions, microemulsions, solid dispersions, cosolvent use, dendrimers, polymer- drug conjugates, polymeric micelles, and mesoporous silica nanoparticles. For each approach the book discusses the main instrumentation, operation principles and theoretical background, with a focus on critical formulation features and clinical studies. Finally, the book includes some recent and novel applications, scale-up considerations and regulatory issues. Drug Delivery Strategies for Poorly Water-Soluble Drugs is an essential multidisciplinary guide to this important area of drug formulation for researchers in industry and academia working in drug delivery, polymers and biomaterials.


Recent Advances in Novel Drug Carrier Systems

Recent Advances in Novel Drug Carrier Systems

Author: Ali Demir Sezer

Publisher: BoD – Books on Demand

Published: 2012-10-31

Total Pages: 516

ISBN-13: 9535108107

DOWNLOAD EBOOK

This contribution book collects reviews and original articles from eminent experts working in the interdisciplinary arena of novel drug delivery systems and their uses. From their direct and recent experience, the readers can achieve a wide vision on the new and ongoing potentialities of different drug delivery systems. Since the advent of analytical techniques and capabilities to measure particle sizes in nanometer ranges, there has been tremendous interest in the use of nanoparticles for more efficient methods of drug delivery. On the other hand, this reference discusses advances in the design, optimization, and adaptation of gene delivery systems for the treatment of cancer, cardiovascular, pulmonary, genetic, and infectious diseases, and considers assessment and review procedures involved in the development of gene-based pharmaceuticals.


Pharmaceutical Amorphous Solid Dispersions

Pharmaceutical Amorphous Solid Dispersions

Author: Ann Newman

Publisher: John Wiley & Sons

Published: 2015-03-09

Total Pages: 502

ISBN-13: 1118455207

DOWNLOAD EBOOK

Providing a roadmap from early to late stages of drug development, this book overviews amorphous solid dispersion technology – a leading platform to deliver poorly water soluble drugs, a major hurdle in today’s pharmaceutical industry. • Helps readers understand amorphous solid dispersions and apply techniques to particular pharmaceutical systems • Covers physical and chemical properties, screening, scale-up, formulation, drug product manufacture, intellectual property, and regulatory considerations • Has an appendix with structure and property information for polymers commonly used in drug development and with marketed drugs developed using the amorphous sold dispersion approach • Addresses global regulatory issues including USA regulations, ICH guidelines, and patent concerns around the world


Innovative Dosage Forms

Innovative Dosage Forms

Author: Yogeshwar Bachhav

Publisher: John Wiley & Sons

Published: 2019-12-04

Total Pages: 470

ISBN-13: 3527343962

DOWNLOAD EBOOK

Teaches future and current drug developers the latest innovations in drug formulation design and optimization This highly accessible, practice-oriented book examines current approaches in the development of drug formulations for preclinical and clinical studies, including the use of functional excipients to enhance solubility and stability. It covers oral, intravenous, topical, and parenteral administration routes. The book also discusses safety aspects of drugs and excipients, as well as regulatory issues relevant to formulation. Innovative Dosage Forms: Design and Development at Early Stage starts with a look at the impact of the polymorphic form of drugs on the preformulation and formulation development. It then offers readers reliable strategies for the formulation development of poorly soluble drugs. The book also studies the role of reactive impurities from the excipients on the formulation shelf life; preclinical formulation assessment of new chemical entities; and regulatory aspects for formulation design. Other chapters cover innovative formulations for special indications, including oncology injectables, delayed release and depot formulations; accessing pharmacokinetics of various dosage forms; physical characterization techniques to assess amorphous nature; novel formulations for protein oral dosage; and more. -Provides information that is essential for the drug development effort -Presents the latest advances in the field and describes in detail innovative formulations, such as nanosuspensions, micelles, and cocrystals -Describes current approaches in early pre-formulation to achieve the best in vivo results -Addresses regulatory and safety aspects, which are key considerations for pharmaceutical companies -Includes case studies from recent drug development programs to illustrate the practical challenges of preformulation design Innovative Dosage Forms: Design and Development at Early Stage provides valuable benefits to interdisciplinary drug discovery teams working in industry and academia and will appeal to medicinal chemists, pharmaceutical chemists, and pharmacologists.


Oral Controlled Release Formulation Design and Drug Delivery

Oral Controlled Release Formulation Design and Drug Delivery

Author: Hong Wen

Publisher: John Wiley & Sons

Published: 2011-01-14

Total Pages: 571

ISBN-13: 1118060326

DOWNLOAD EBOOK

This book describes the theories, applications, and challenges for different oral controlled release formulations. This book differs from most in its focus on oral controlled release formulation design and process development. It also covers the related areas like preformulation, biopharmaceutics, in vitro-in vivo correlations (IVIVC), quality by design (QbD), and regulatory issues.