Algebraic Topology - Homotopy and Homology

Algebraic Topology - Homotopy and Homology

Author: Robert M. Switzer

Publisher: Springer

Published: 2017-12-01

Total Pages: 541

ISBN-13: 3642619231

DOWNLOAD EBOOK

From the reviews: "The author has attempted an ambitious and most commendable project. [...] The book contains much material that has not previously appeared in this format. The writing is clean and clear and the exposition is well motivated. [...] This book is, all in all, a very admirable work and a valuable addition to the literature." Mathematical Reviews


Homotopy Methods in Algebraic Topology

Homotopy Methods in Algebraic Topology

Author: Nicholas Kuhn

Publisher: American Mathematical Soc.

Published: 2001-04-25

Total Pages: 370

ISBN-13: 0821826212

DOWNLOAD EBOOK

This volume presents the proceedings from the AMS-IMS-SIAM Summer Research Conference on Homotopy Methods in Algebraic Topology held at the University of Colorado (Boulder). The conference coincided with the sixtieth birthday of J. Peter May. An article is included reflecting his wide-ranging and influential contributions to the subject area. Other articles in the book discuss the ordinary, elliptic and real-oriented Adams spectral sequences, mapping class groups, configuration spaces, extended powers, operads, the telescope conjecture, $p$-compact groups, algebraic K theory, stable and unstable splittings, the calculus of functors, the $E_{\infty}$ tensor product, and equivariant cohomology theories. The book offers a compendious source on modern aspects of homotopy theoretic methods in many algebraic settings.


Algebraic Topology

Algebraic Topology

Author: C. R. F. Maunder

Publisher: Courier Corporation

Published: 1996-01-01

Total Pages: 414

ISBN-13: 9780486691312

DOWNLOAD EBOOK

Based on lectures to advanced undergraduate and first-year graduate students, this is a thorough, sophisticated, and modern treatment of elementary algebraic topology, essentially from a homotopy theoretic viewpoint. Author C.R.F. Maunder provides examples and exercises; and notes and references at the end of each chapter trace the historical development of the subject.


Algebraic Topology from a Homotopical Viewpoint

Algebraic Topology from a Homotopical Viewpoint

Author: Marcelo Aguilar

Publisher: Springer Science & Business Media

Published: 2008-02-02

Total Pages: 499

ISBN-13: 0387224890

DOWNLOAD EBOOK

The authors present introductory material in algebraic topology from a novel point of view in using a homotopy-theoretic approach. This carefully written book can be read by any student who knows some topology, providing a useful method to quickly learn this novel homotopy-theoretic point of view of algebraic topology.


Homotopy of Operads and Grothendieck-Teichmuller Groups

Homotopy of Operads and Grothendieck-Teichmuller Groups

Author: Benoit Fresse

Publisher: American Mathematical Soc.

Published: 2017-04-21

Total Pages: 581

ISBN-13: 1470434814

DOWNLOAD EBOOK

The Grothendieck–Teichmüller group was defined by Drinfeld in quantum group theory with insights coming from the Grothendieck program in Galois theory. The ultimate goal of this book is to explain that this group has a topological interpretation as a group of homotopy automorphisms associated to the operad of little 2-discs, which is an object used to model commutative homotopy structures in topology. This volume gives a comprehensive survey on the algebraic aspects of this subject. The book explains the definition of an operad in a general context, reviews the definition of the little discs operads, and explains the definition of the Grothendieck–Teichmüller group from the viewpoint of the theory of operads. In the course of this study, the relationship between the little discs operads and the definition of universal operations associated to braided monoidal category structures is explained. Also provided is a comprehensive and self-contained survey of the applications of Hopf algebras to the definition of a rationalization process, the Malcev completion, for groups and groupoids. Most definitions are carefully reviewed in the book; it requires minimal prerequisites to be accessible to a broad readership of graduate students and researchers interested in the applications of operads.


Algebraic Methods in Unstable Homotopy Theory

Algebraic Methods in Unstable Homotopy Theory

Author: Joseph Neisendorfer

Publisher: Cambridge University Press

Published: 2010-02-18

Total Pages: 575

ISBN-13: 1139482599

DOWNLOAD EBOOK

The most modern and thorough treatment of unstable homotopy theory available. The focus is on those methods from algebraic topology which are needed in the presentation of results, proven by Cohen, Moore, and the author, on the exponents of homotopy groups. The author introduces various aspects of unstable homotopy theory, including: homotopy groups with coefficients; localization and completion; the Hopf invariants of Hilton, James, and Toda; Samelson products; homotopy Bockstein spectral sequences; graded Lie algebras; differential homological algebra; and the exponent theorems concerning the homotopy groups of spheres and Moore spaces. This book is suitable for a course in unstable homotopy theory, following a first course in homotopy theory. It is also a valuable reference for both experts and graduate students wishing to enter the field.


Algebraic Topology: An Intuitive Approach

Algebraic Topology: An Intuitive Approach

Author: Hajime Satō

Publisher: American Mathematical Soc.

Published: 1999

Total Pages: 144

ISBN-13: 9780821810460

DOWNLOAD EBOOK

The single most difficult thing one faces when one begins to learn a new branch of mathematics is to get a feel for the mathematical sense of the subject. The purpose of this book is to help the aspiring reader acquire this essential common sense about algebraic topology in a short period of time. To this end, Sato leads the reader through simple but meaningful examples in concrete terms. Moreover, results are not discussed in their greatest possible generality, but in terms of the simplest and most essential cases. In response to suggestions from readers of the original edition of this book, Sato has added an appendix of useful definitions and results on sets, general topology, groups and such. He has also provided references. Topics covered include fundamental notions such as homeomorphisms, homotopy equivalence, fundamental groups and higher homotopy groups, homology and cohomology, fiber bundles, spectral sequences and characteristic classes. Objects and examples considered in the text include the torus, the Möbius strip, the Klein bottle, closed surfaces, cell complexes and vector bundles.


Basic Concepts of Algebraic Topology

Basic Concepts of Algebraic Topology

Author: F.H. Croom

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 187

ISBN-13: 1468494759

DOWNLOAD EBOOK

This text is intended as a one semester introduction to algebraic topology at the undergraduate and beginning graduate levels. Basically, it covers simplicial homology theory, the fundamental group, covering spaces, the higher homotopy groups and introductory singular homology theory. The text follows a broad historical outline and uses the proofs of the discoverers of the important theorems when this is consistent with the elementary level of the course. This method of presentation is intended to reduce the abstract nature of algebraic topology to a level that is palatable for the beginning student and to provide motivation and cohesion that are often lacking in abstact treatments. The text emphasizes the geometric approach to algebraic topology and attempts to show the importance of topological concepts by applying them to problems of geometry and analysis. The prerequisites for this course are calculus at the sophomore level, a one semester introduction to the theory of groups, a one semester introduc tion to point-set topology and some familiarity with vector spaces. Outlines of the prerequisite material can be found in the appendices at the end of the text. It is suggested that the reader not spend time initially working on the appendices, but rather that he read from the beginning of the text, referring to the appendices as his memory needs refreshing. The text is designed for use by college juniors of normal intelligence and does not require "mathematical maturity" beyond the junior level.


Abstract Homotopy And Simple Homotopy Theory

Abstract Homotopy And Simple Homotopy Theory

Author: K Heiner Kamps

Publisher: World Scientific

Published: 1997-04-11

Total Pages: 476

ISBN-13: 9814502553

DOWNLOAD EBOOK

The abstract homotopy theory is based on the observation that analogues of much of the topological homotopy theory and simple homotopy theory exist in many other categories (e.g. spaces over a fixed base, groupoids, chain complexes, module categories). Studying categorical versions of homotopy structure, such as cylinders and path space constructions, enables not only a unified development of many examples of known homotopy theories but also reveals the inner working of the classical spatial theory. This demonstrates the logical interdependence of properties (in particular the existence of certain Kan fillers in associated cubical sets) and results (Puppe sequences, Vogt's Iemma, Dold's theorem on fibre homotopy equivalences, and homotopy coherence theory).