Homology, Cohomology, And Sheaf Cohomology For Algebraic Topology, Algebraic Geometry, And Differential Geometry

Homology, Cohomology, And Sheaf Cohomology For Algebraic Topology, Algebraic Geometry, And Differential Geometry

Author: Jean H Gallier

Publisher: World Scientific

Published: 2022-01-19

Total Pages: 799

ISBN-13: 9811245045

DOWNLOAD EBOOK

For more than thirty years the senior author has been trying to learn algebraic geometry. In the process he discovered that many of the classic textbooks in algebraic geometry require substantial knowledge of cohomology, homological algebra, and sheaf theory. In an attempt to demystify these abstract concepts and facilitate understanding for a new generation of mathematicians, he along with co-author wrote this book for an audience who is familiar with basic concepts of linear and abstract algebra, but who never has had any exposure to the algebraic geometry or homological algebra. As such this book consists of two parts. The first part gives a crash-course on the homological and cohomological aspects of algebraic topology, with a bias in favor of cohomology. The second part is devoted to presheaves, sheaves, Cech cohomology, derived functors, sheaf cohomology, and spectral sequences. All important concepts are intuitively motivated and the associated proofs of the quintessential theorems are presented in detail rarely found in the standard texts.


Homology, Cohomology, and Sheaf Cohomology for Algebraic Topology, Algebraic Geometry, and Differential Geometry

Homology, Cohomology, and Sheaf Cohomology for Algebraic Topology, Algebraic Geometry, and Differential Geometry

Author: Jean H. Gallier

Publisher:

Published: 2022

Total Pages: 0

ISBN-13: 9789811245039

DOWNLOAD EBOOK

"For more than thirty years the senior author has been trying to learn algebraic geometry. In the process he discovered that many of the classic textbooks in algebraic geometry require substantial knowledge of cohomology, homological algebra, and sheaf theory. In an attempt to demystify these abstract concepts and facilitate understanding for a new generation of mathematicians, he along with co-author wrote this book for an audience who is familiar with basic concepts of linear and abstract algebra, but who never has had any exposure to the algebraic geometry or homological algebra. As such this book consists of two parts. The first part gives a crash-course on the homological and cohomological aspects of algebraic topology, with a bias in favor of cohomology. The second part is devoted to presheaves, sheaves, Cech cohomology, derived functors, sheaf cohomology, and spectral sequences. All important concepts are intuitively motivated and the associated proofs of the quintessential theorems are presented in detail rarely found in the standard texts"--


Homology Theory

Homology Theory

Author: James W. Vick

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 258

ISBN-13: 1461208815

DOWNLOAD EBOOK

This introduction to some basic ideas in algebraic topology is devoted to the foundations and applications of homology theory. After the essentials of singular homology and some important applications are given, successive topics covered include attaching spaces, finite CW complexes, cohomology products, manifolds, Poincare duality, and fixed point theory. This second edition includes a chapter on covering spaces and many new exercises.


Manifolds, Sheaves, and Cohomology

Manifolds, Sheaves, and Cohomology

Author: Torsten Wedhorn

Publisher: Springer

Published: 2016-07-25

Total Pages: 366

ISBN-13: 3658106336

DOWNLOAD EBOOK

This book explains techniques that are essential in almost all branches of modern geometry such as algebraic geometry, complex geometry, or non-archimedian geometry. It uses the most accessible case, real and complex manifolds, as a model. The author especially emphasizes the difference between local and global questions. Cohomology theory of sheaves is introduced and its usage is illustrated by many examples.


Intersection Homology & Perverse Sheaves

Intersection Homology & Perverse Sheaves

Author: Laurenţiu G. Maxim

Publisher: Springer Nature

Published: 2019-11-30

Total Pages: 278

ISBN-13: 3030276449

DOWNLOAD EBOOK

This textbook provides a gentle introduction to intersection homology and perverse sheaves, where concrete examples and geometric applications motivate concepts throughout. By giving a taste of the main ideas in the field, the author welcomes new readers to this exciting area at the crossroads of topology, algebraic geometry, analysis, and differential equations. Those looking to delve further into the abstract theory will find ample references to facilitate navigation of both classic and recent literature. Beginning with an introduction to intersection homology from a geometric and topological viewpoint, the text goes on to develop the sheaf-theoretical perspective. Then algebraic geometry comes to the fore: a brief discussion of constructibility opens onto an in-depth exploration of perverse sheaves. Highlights from the following chapters include a detailed account of the proof of the Beilinson–Bernstein–Deligne–Gabber (BBDG) decomposition theorem, applications of perverse sheaves to hypersurface singularities, and a discussion of Hodge-theoretic aspects of intersection homology via Saito’s deep theory of mixed Hodge modules. An epilogue offers a succinct summary of the literature surrounding some recent applications. Intersection Homology & Perverse Sheaves is suitable for graduate students with a basic background in topology and algebraic geometry. By building context and familiarity with examples, the text offers an ideal starting point for those entering the field. This classroom-tested approach opens the door to further study and to current research.


From Calculus to Cohomology

From Calculus to Cohomology

Author: Ib H. Madsen

Publisher: Cambridge University Press

Published: 1997-03-13

Total Pages: 302

ISBN-13: 9780521589567

DOWNLOAD EBOOK

An introductory textbook on cohomology and curvature with emphasis on applications.


Lecture Notes in Algebraic Topology

Lecture Notes in Algebraic Topology

Author: James F. Davis

Publisher: American Mathematical Society

Published: 2023-05-22

Total Pages: 385

ISBN-13: 1470473682

DOWNLOAD EBOOK

The amount of algebraic topology a graduate student specializing in topology must learn can be intimidating. Moreover, by their second year of graduate studies, students must make the transition from understanding simple proofs line-by-line to understanding the overall structure of proofs of difficult theorems. To help students make this transition, the material in this book is presented in an increasingly sophisticated manner. It is intended to bridge the gap between algebraic and geometric topology, both by providing the algebraic tools that a geometric topologist needs and by concentrating on those areas of algebraic topology that are geometrically motivated. Prerequisites for using this book include basic set-theoretic topology, the definition of CW-complexes, some knowledge of the fundamental group/covering space theory, and the construction of singular homology. Most of this material is briefly reviewed at the beginning of the book. The topics discussed by the authors include typical material for first- and second-year graduate courses. The core of the exposition consists of chapters on homotopy groups and on spectral sequences. There is also material that would interest students of geometric topology (homology with local coefficients and obstruction theory) and algebraic topology (spectra and generalized homology), as well as preparation for more advanced topics such as algebraic $K$-theory and the s-cobordism theorem. A unique feature of the book is the inclusion, at the end of each chapter, of several projects that require students to present proofs of substantial theorems and to write notes accompanying their explanations. Working on these projects allows students to grapple with the “big picture”, teaches them how to give mathematical lectures, and prepares them for participating in research seminars. The book is designed as a textbook for graduate students studying algebraic and geometric topology and homotopy theory. It will also be useful for students from other fields such as differential geometry, algebraic geometry, and homological algebra. The exposition in the text is clear; special cases are presented over complex general statements.


Cohomology and Differential Forms

Cohomology and Differential Forms

Author: Izu Vaisman

Publisher: Courier Dover Publications

Published: 2016-08-17

Total Pages: 305

ISBN-13: 0486804836

DOWNLOAD EBOOK

This monograph explores the cohomological theory of manifolds with various sheaves and its application to differential geometry. Based on lectures given by author Izu Vaisman at Romania's University of Iasi, the treatment is suitable for advanced undergraduates and graduate students of mathematics as well as mathematical researchers in differential geometry, global analysis, and topology. A self-contained development of cohomological theory constitutes the central part of the book. Topics include categories and functors, the Čech cohomology with coefficients in sheaves, the theory of fiber bundles, and differentiable, foliated, and complex analytic manifolds. The final chapter covers the theorems of de Rham and Dolbeault-Serre and examines the theorem of Allendoerfer and Eells, with applications of these theorems to characteristic classes and the general theory of harmonic forms.


A Concise Course in Algebraic Topology

A Concise Course in Algebraic Topology

Author: J. P. May

Publisher: University of Chicago Press

Published: 1999-09

Total Pages: 262

ISBN-13: 9780226511832

DOWNLOAD EBOOK

Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.