Hingeless Rotorcraft Flight Dynamics

Hingeless Rotorcraft Flight Dynamics

Author: Kurt H. Hohenemser

Publisher:

Published: 1974

Total Pages: 56

ISBN-13:

DOWNLOAD EBOOK

The state of hingless rotorcraft research and development in the NATO countries as of 1973 is described. The scope of this report is limited to flight dynamics (as defined in the Preface) since most of the hingeless rotorcraft problems have occurred in this area. In the Introduction, the special place of the hingeless rotorcraft within the family of rotorcraft is considered. The chapter on the history of hingeless rotorcraft describes the hingeless rotor research and development of the various rotorcraft manufacturers and the hingless rotor research at government laboratories and universities. A hierarchy of dynamic concepts from isolated blade dynamics to complete rotor/body dynamics is introduced. The effects of the basic rotor design parameters on flight dynamics are traced and certain hingeless rotorcraft problems are treated in some detail. A special chapter is devoted to the alleviation of hingeless rotor flight-dynamics problems by feedback control systems. Finaly, analytical modeling techniques, mathematical analysis techniques, and model and flight testing techniques for hingeless rotorcraft are discussed.


Helicopter Flight Dynamics

Helicopter Flight Dynamics

Author: Gareth D. Padfield

Publisher: John Wiley & Sons

Published: 2008-04-15

Total Pages: 681

ISBN-13: 0470691166

DOWNLOAD EBOOK

The behaviour of helicopters is so complex that understanding the physical mechanisms at work in trim, stability and response, and thus the prediction of Flying Qualities, requires a framework of analytical and numerical modelling and simulation. Good Flying Qualities are vital for ensuring that mission performance is achievable with safety and, in the first edition of Helicopter Flight Dynamics, a comprehensive treatment of design criteria was presented. In this second edition, the author complements this with a new Chapter on Degraded Flying Qualities, drawing examples from flight in poor visibility, failure of control functions and encounters with severe atmospheric disturbances. Fully embracing the consequences of Degraded Flying Qualities during the design phase will contribute positively to safety. The accurate prediction and assessment of Flying Qualities draws on the modelling and simulation discipline on the one hand and testing methodologies on the other. Checking predictions in flight requires clearly defined ‘mission-task-elements’, derived from missions with realistic performance requirements. High fidelity simulations also form the basis for the design of stability and control augmentation systems, essential for conferring Level 1 Flying Qualities. The integrated description of flight dynamic modelling, simulation and flying qualities forms the subject of this book, which will be of interest to engineers in research laboratories and manufacturing industry, test pilots and flight test engineers, and as a reference for graduate and postgraduate students in aerospace engineering. The Author Gareth Padfield, a Fellow of the Royal Aeronautical Society, is the Bibby Professor of Aerospace Engineering at the University of Liverpool. He is an aeronautical engineer by training and has spent his career to date researching the theory and practice of flight for both fixed-wing aeroplanes and rotorcraft. During his years with the UK’s Royal Aircraft Establishment and Defence Evaluation and Research Agency, he conducted research into rotorcraft dynamics, handling qualities and flight control. His work has involved a mix of flight testing, creating and testing simulation models and developing analytic approximations to describe flight behaviour and handling qualities. Much of his research has been conducted in the context of international collaboration – with the Technical Co-operation Programme, AGARD and GARTEUR as well as more informal collaborations with industry, universities and research centres worldwide. He is very aware that many accomplishments, including this book, could not have been achieved without the global networking that aerospace research affords. During the last 8 years as an academic, the author has continued to develop his knowledge and understanding in flight dynamics, not only through research, but also through teaching the subject at undergraduate level; an experience that affords a new and deeper kind of learning that, hopefully, readers of this book will benefit from.


Flight Dynamics, Simulation, and Control

Flight Dynamics, Simulation, and Control

Author: Ranjan Vepa

Publisher: CRC Press

Published: 2023-04-11

Total Pages: 643

ISBN-13: 1000848019

DOWNLOAD EBOOK

Flight Dynamics, Simulation, and Control of Aircraft: For Rigid and Flexible Aircraft explains the basics of non-linear aircraft dynamics and the principles of control-configured aircraft design, as applied to rigid and flexible aircraft, drones, and unmanned aerial vehicles (UAVs). Addressing the details of dynamic modeling, simulation, and control in a selection of aircraft, the book explores key concepts associated with control-configured elastic aircraft. It also covers the conventional dynamics of rigid aircraft and examines the use of linear and non-linear model-based techniques and their applications to flight control. This second edition features a new chapter on the dynamics and control principles of drones and UAVs, aiding in the design of newer aircraft with a combination of propulsive and aerodynamic control surfaces. In addition, the book includes new sections, approximately 20 problems per chapter, examples, simulator exercises, and case studies to enhance and reinforce student understanding. The book is intended for senior undergraduate and graduate mechanical and aerospace engineering students taking Flight Dynamics and Flight Control courses. Instructors will be able to utilize an updated Solutions Manual and figure slides for their course.


Rotorcraft Aeromechanics

Rotorcraft Aeromechanics

Author: Wayne Johnson

Publisher: Cambridge University Press

Published: 2013-04-29

Total Pages: 949

ISBN-13: 1107028078

DOWNLOAD EBOOK

A rotorcraft is a class of aircraft that uses large-diameter rotating wings to accomplish efficient vertical take-off and landing. The class encompasses helicopters of numerous configurations (single main rotor and tail rotor, tandem rotors, coaxial rotors), tilting proprotor aircraft, compound helicopters, and many other innovative configuration concepts. Aeromechanics covers much of what the rotorcraft engineer needs: performance, loads, vibration, stability, flight dynamics, and noise. These topics include many of the key performance attributes and the often-encountered problems in rotorcraft designs. This comprehensive book presents, in depth, what engineers need to know about modelling rotorcraft aeromechanics. The focus is on analysis, and calculated results are presented to illustrate analysis characteristics and rotor behaviour. The first third of the book is an introduction to rotorcraft aerodynamics, blade motion, and performance. The remainder of the book covers advanced topics in rotary wing aerodynamics and dynamics.


Helicopter Flight Dynamics

Helicopter Flight Dynamics

Author: Gareth D. Padfield

Publisher: John Wiley & Sons

Published: 2018-09-10

Total Pages: 1624

ISBN-13: 1119401070

DOWNLOAD EBOOK

The Book The behaviour of helicopters and tiltrotor aircraft is so complex that understanding the physical mechanisms at work in trim, stability and response, and thus the prediction of Flying Qualities, requires a framework of analytical and numerical modelling and simulation. Good Flying Qualities are vital for ensuring that mission performance is achievable with safety and, in the first and second editions of Helicopter Flight Dynamics, a comprehensive treatment of design criteria was presented, relating to both normal and degraded Flying Qualities. Fully embracing the consequences of Degraded Flying Qualities during the design phase will contribute positively to safety. In this third edition, two new Chapters are included. Chapter 9 takes the reader on a journey from the origins of the story of Flying Qualities, tracing key contributions to the developing maturity and to the current position. Chapter 10 provides a comprehensive treatment of the Flight Dynamics of tiltrotor aircraft; informed by research activities and the limited data on operational aircraft. Many of the unique behavioural characteristics of tiltrotors are revealed for the first time in this book. The accurate prediction and assessment of Flying Qualities draws on the modelling and simulation discipline on the one hand and testing practice on the other. Checking predictions in flight requires clearly defined mission tasks, derived from realistic performance requirements. High fidelity simulations also form the basis for the design of stability and control augmentation systems, essential for conferring Level 1 Flying Qualities. The integrated description of flight dynamic modelling, simulation and flying qualities of rotorcraft forms the subject of this book, which will be of interest to engineers practising and honing their skills in research laboratories, academia and manufacturing industries, test pilots and flight test engineers, and as a reference for graduate and postgraduate students in aerospace engineering.


Helicopter Flight Dynamics

Helicopter Flight Dynamics

Author: G. D. Padfield

Publisher: Wiley-Blackwell

Published: 2007

Total Pages: 641

ISBN-13: 1405118172

DOWNLOAD EBOOK

Good flying qualities are vital for ensuring that mission performance is achievable with safety and, in the first edition of Helicopter Flight Dynamics, a comprehensive treatment of design criteria was presented. In this second edition, the author complements this with a new chapter on degraded flying qualities, drawing examples from flight in poor visibility, failure of control functions and encounters with severe atmospheric disturbances. Fully embracing the consequences of degraded flying qualities during the design phase will contribute positively to safety. The accurate prediction and assessment of flying qualities draws on modelling and simulation discipline on the one hand and testing methodologies on the other. Checking predictions in flight requires clearly defined 'mission-task-elements', derived from missions with realistic performance requirements. High fidelity simulations also form the basis (or the design of stability and control augmentation systems, essential for conferring level one flying qualities. The integrated description of flight dynamic modelling, simulation and flying qualities forms the subject of this book, which will be of interest to engineers in research laboratories and manufacturing industry, test pilots and flight test engineers, and as a reference for graduate and postgraduate students in aerospace engineering.


Basic Helicopter Aerodynamics

Basic Helicopter Aerodynamics

Author: John M. Seddon

Publisher: John Wiley & Sons

Published: 2011-08-22

Total Pages: 292

ISBN-13: 0470665017

DOWNLOAD EBOOK

Basic Helicopter Aerodynamics is widely appreciated as an easily accessible, rounded introduction to the first principles of the aerodynamics of helicopter flight. Simon Newman has brought this third edition completely up to date with a full new set of illustrations and imagery. An accompanying website www.wiley.com/go/seddon contains all the calculation files used in the book, problems, solutions, PPT slides and supporting MATLAB® code. Simon Newman addresses the unique considerations applicable to rotor UAVs and MAVs, and coverage of blade dynamics is expanded to include both flapping, lagging and ground resonance. New material is included on blade tip design, flow characteristics surrounding the rotor in forward flight, tail rotors, brown-out, blade sailing and shipborne operations. Concentrating on the well-known Sikorsky configuration of single main rotor with tail rotor, early chapters deal with the aerodynamics of the rotor in hover, vertical flight, forward flight and climb. Analysis of these motions is developed to the stage of obtaining the principal results for thrust, power and associated quantities. Later chapters turn to the characteristics of the overall helicopter, its performance, stability and control, and the important field of aerodynamic research is discussed, with some reference also to aerodynamic design practice. This introductory level treatment to the aerodynamics of helicopter flight will appeal to aircraft design engineers and undergraduate and graduate students in aircraft design, as well as practising engineers looking for an introduction to or refresher course on the subject.


Bramwell's Helicopter Dynamics

Bramwell's Helicopter Dynamics

Author: A. R. S. Bramwell

Publisher: Elsevier

Published: 2001-04-06

Total Pages: 403

ISBN-13: 0080528309

DOWNLOAD EBOOK

Since the original publication of 'Bramwell's Helicopter Dynamics' in 1976, this book has become the definitive text on helicopter dynamics and a fundamental part of the study of the behaviour of helicopters. This new edition builds on the strengths of the original and hence the approach of the first edition is retained. The authors provide a comprehensive overview of helicopter aerodynamics, stability, control, structural dynamics, vibration, aeroelastic and aeromechanical stability. As such, Bramwell's Helicopter Dynamics is essential for all those in aeronautical engineering.THE single volume comprehensive guide for anyone working with helicopters Written by leading worldwide experts in the field