Higher Structures in Geometry and Physics

Higher Structures in Geometry and Physics

Author: Alberto S. Cattaneo

Publisher: Springer Science & Business Media

Published: 2010-11-25

Total Pages: 371

ISBN-13: 081764735X

DOWNLOAD EBOOK

This book is centered around higher algebraic structures stemming from the work of Murray Gerstenhaber and Jim Stasheff that are now ubiquitous in various areas of mathematics— such as algebra, algebraic topology, differential geometry, algebraic geometry, mathematical physics— and in theoretical physics such as quantum field theory and string theory. These higher algebraic structures provide a common language essential in the study of deformation quantization, theory of algebroids and groupoids, symplectic field theory, and much more. Each contribution in this volume expands on the ideas of Gerstenhaber and Stasheff. The volume is intended for post-graduate students, mathematical and theoretical physicists, and mathematicians interested in higher structures.


Higher Structures in Topology, Geometry, and Physics

Higher Structures in Topology, Geometry, and Physics

Author: Ralph M. Kaufmann

Publisher: American Mathematical Society

Published: 2024-07-03

Total Pages: 332

ISBN-13: 1470471426

DOWNLOAD EBOOK

This volume contains the proceedings of the AMS Special Session on Higher Structures in Topology, Geometry, and Physics, held virtually on March 26–27, 2022. The articles give a snapshot survey of the current topics surrounding the mathematical formulation of field theories. There is an intricate interplay between geometry, topology, and algebra which captures these theories. The hallmark are higher structures, which one can consider as the secondary algebraic or geometric background on which the theories are formulated. The higher structures considered in the volume are generalizations of operads, models for conformal field theories, string topology, open/closed field theories, BF/BV formalism, actions on Hochschild complexes and related complexes, and their geometric and topological aspects.


Geometry and Physics

Geometry and Physics

Author: Jürgen Jost

Publisher: Springer Science & Business Media

Published: 2009-08-17

Total Pages: 226

ISBN-13: 3642005411

DOWNLOAD EBOOK

"Geometry and Physics" addresses mathematicians wanting to understand modern physics, and physicists wanting to learn geometry. It gives an introduction to modern quantum field theory and related areas of theoretical high-energy physics from the perspective of Riemannian geometry, and an introduction to modern geometry as needed and utilized in modern physics. Jürgen Jost, a well-known research mathematician and advanced textbook author, also develops important geometric concepts and methods that can be used for the structures of physics. In particular, he discusses the Lagrangians of the standard model and its supersymmetric extensions from a geometric perspective.


A Course in Modern Mathematical Physics

A Course in Modern Mathematical Physics

Author: Peter Szekeres

Publisher: Cambridge University Press

Published: 2004-12-16

Total Pages: 620

ISBN-13: 9780521829601

DOWNLOAD EBOOK

This textbook, first published in 2004, provides an introduction to the major mathematical structures used in physics today.


New Foundations for Physical Geometry

New Foundations for Physical Geometry

Author: Tim Maudlin

Publisher:

Published: 2014-02

Total Pages: 374

ISBN-13: 0198701306

DOWNLOAD EBOOK

Tim Maudlin sets out a completely new method for describing the geometrical structure of spaces, and thus a better mathematical tool for describing and understanding space-time. He presents a historical review of the development of geometry and topology, and then his original Theory of Linear Structures.


Topology and Geometry for Physics

Topology and Geometry for Physics

Author: Helmut Eschrig

Publisher: Springer

Published: 2011-01-26

Total Pages: 397

ISBN-13: 3642147003

DOWNLOAD EBOOK

A concise but self-contained introduction of the central concepts of modern topology and differential geometry on a mathematical level is given specifically with applications in physics in mind. All basic concepts are systematically provided including sketches of the proofs of most statements. Smooth finite-dimensional manifolds, tensor and exterior calculus operating on them, homotopy, (co)homology theory including Morse theory of critical points, as well as the theory of fiber bundles and Riemannian geometry, are treated. Examples from physics comprise topological charges, the topology of periodic boundary conditions for solids, gauge fields, geometric phases in quantum physics and gravitation.


The Geometry of Physics

The Geometry of Physics

Author: Theodore Frankel

Publisher: Cambridge University Press

Published: 2011-11-03

Total Pages: 749

ISBN-13: 1139505610

DOWNLOAD EBOOK

This book provides a working knowledge of those parts of exterior differential forms, differential geometry, algebraic and differential topology, Lie groups, vector bundles and Chern forms that are essential for a deeper understanding of both classical and modern physics and engineering. Included are discussions of analytical and fluid dynamics, electromagnetism (in flat and curved space), thermodynamics, the Dirac operator and spinors, and gauge fields, including Yang–Mills, the Aharonov–Bohm effect, Berry phase and instanton winding numbers, quarks and quark model for mesons. Before discussing abstract notions of differential geometry, geometric intuition is developed through a rather extensive introduction to the study of surfaces in ordinary space. The book is ideal for graduate and advanced undergraduate students of physics, engineering or mathematics as a course text or for self study. This third edition includes an overview of Cartan's exterior differential forms, which previews many of the geometric concepts developed in the text.


Higher Operads, Higher Categories

Higher Operads, Higher Categories

Author: Tom Leinster

Publisher: Cambridge University Press

Published: 2004-07-22

Total Pages: 451

ISBN-13: 0521532159

DOWNLOAD EBOOK

Foundations of higher dimensional category theory for graduate students and researchers in mathematics and mathematical physics.