Theory and Applications of Long-Range Dependence

Theory and Applications of Long-Range Dependence

Author: Paul Doukhan

Publisher: Springer Science & Business Media

Published: 2002-12-13

Total Pages: 744

ISBN-13: 9780817641689

DOWNLOAD EBOOK

The area of data analysis has been greatly affected by our computer age. For example, the issue of collecting and storing huge data sets has become quite simplified and has greatly affected such areas as finance and telecommunications. Even non-specialists try to analyze data sets and ask basic questions about their structure. One such question is whether one observes some type of invariance with respect to scale, a question that is closely related to the existence of long-range dependence in the data. This important topic of long-range dependence is the focus of this unique work, written by a number of specialists on the subject. The topics selected should give a good overview from the probabilistic and statistical perspective. Included will be articles on fractional Brownian motion, models, inequalities and limit theorems, periodic long-range dependence, parametric, semiparametric, and non-parametric estimation, long-memory stochastic volatility models, robust estimation, and prediction for long-range dependence sequences. For those graduate students and researchers who want to use the methodology and need to know the "tricks of the trade," there will be a special section called "Mathematical Techniques." Topics in the first part of the book are covered from probabilistic and statistical perspectives and include fractional Brownian motion, models, inequalities and limit theorems, periodic long-range dependence, parametric, semiparametric, and non-parametric estimation, long-memory stochastic volatility models, robust estimation, prediction for long-range dependence sequences. The reader is referred to more detailed proofs if already found in the literature. The last part of the book is devoted to applications in the areas of simulation, estimation and wavelet techniques, traffic in computer networks, econometry and finance, multifractal models, and hydrology. Diagrams and illustrations enhance the presentation. Each article begins with introductory background material and is accessible to mathematicians, a variety of practitioners, and graduate students. The work serves as a state-of-the art reference or graduate seminar text.


Long-Range Dependence and Self-Similarity

Long-Range Dependence and Self-Similarity

Author: Vladas Pipiras

Publisher: Cambridge University Press

Published: 2017-04-18

Total Pages: 693

ISBN-13: 1107039460

DOWNLOAD EBOOK

A modern and rigorous introduction to long-range dependence and self-similarity, complemented by numerous more specialized up-to-date topics in this research area.


Statistics for Long-Memory Processes

Statistics for Long-Memory Processes

Author: Jan Beran

Publisher: Routledge

Published: 2017-11-22

Total Pages: 336

ISBN-13: 1351414100

DOWNLOAD EBOOK

Statistical Methods for Long Term Memory Processes covers the diverse statistical methods and applications for data with long-range dependence. Presenting material that previously appeared only in journals, the author provides a concise and effective overview of probabilistic foundations, statistical methods, and applications. The material emphasizes basic principles and practical applications and provides an integrated perspective of both theory and practice. This book explores data sets from a wide range of disciplines, such as hydrology, climatology, telecommunications engineering, and high-precision physical measurement. The data sets are conveniently compiled in the index, and this allows readers to view statistical approaches in a practical context. Statistical Methods for Long Term Memory Processes also supplies S-PLUS programs for the major methods discussed. This feature allows the practitioner to apply long memory processes in daily data analysis. For newcomers to the area, the first three chapters provide the basic knowledge necessary for understanding the remainder of the material. To promote selective reading, the author presents the chapters independently. Combining essential methodologies with real-life applications, this outstanding volume is and indispensable reference for statisticians and scientists who analyze data with long-range dependence.


Chaos Expansions, Multiple Wiener-Ito Integrals, and Their Applications

Chaos Expansions, Multiple Wiener-Ito Integrals, and Their Applications

Author: Christian Houdre

Publisher: CRC Press

Published: 1994-04-05

Total Pages: 396

ISBN-13: 9780849380723

DOWNLOAD EBOOK

The study of chaos expansions and multiple Wiener-Ito integrals has become a field of considerable interest in applied and theoretical areas of probability, stochastic processes, mathematical physics, and statistics. Divided into four parts, this book features a wide selection of surveys and recent developments on these subjects. Part 1 introduces the concepts, techniques, and applications of multiple Wiener-Ito and related integrals. The second part includes papers on chaos random variables appearing in many limiting theorems. Part 3 is devoted to mixing, zero-one laws, and path continuity properties of chaos processes. The final part presents several applications to stochastic analysis.


Mathematics in Industrial Problems

Mathematics in Industrial Problems

Author: Avner Friedman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 198

ISBN-13: 146121730X

DOWNLOAD EBOOK

This is the tenth volume in the series "Mathematics in Industrial Prob lems. " The motivation for these volumes is to foster interaction between Industry and Mathematics at the "grass roots level;" that is, at the level of specific problems. These problems come from Industry: they arise from models developed by the industrial scientists in ventures directed at the manufacture of new or improved products. At the same time, these prob lems have the potential for mathematical challenge and novelty. To identify such problems, I have visited industries and had discussions with their scientists. Some of the scientists have subsequently presented their problems in the IMA Seminar on Industrial Problems. The book is based on the seminar presentations and on questions raised in subse quent discussions. Each chapter is devoted to one of the talks and is self contained. The chapters usually provide references to the mathematical literature and a list of open problems which are of interest to the industrial scientists. For some problems a partial solution is indicated briefly. The last chapter of the book contains a short description of solutions to some of the problems raised in the previous volume, as well as references to papers in which such solutions have been published. The speakers in the Seminar on Industrial Problems have given us at the IMA hours of delight and discovery.


Long-Memory Processes

Long-Memory Processes

Author: Jan Beran

Publisher: Springer Science & Business Media

Published: 2013-05-14

Total Pages: 892

ISBN-13: 3642355129

DOWNLOAD EBOOK

Long-memory processes are known to play an important part in many areas of science and technology, including physics, geophysics, hydrology, telecommunications, economics, finance, climatology, and network engineering. In the last 20 years enormous progress has been made in understanding the probabilistic foundations and statistical principles of such processes. This book provides a timely and comprehensive review, including a thorough discussion of mathematical and probabilistic foundations and statistical methods, emphasizing their practical motivation and mathematical justification. Proofs of the main theorems are provided and data examples illustrate practical aspects. This book will be a valuable resource for researchers and graduate students in statistics, mathematics, econometrics and other quantitative areas, as well as for practitioners and applied researchers who need to analyze data in which long memory, power laws, self-similar scaling or fractal properties are relevant.


Stochastic Models in Queueing Theory

Stochastic Models in Queueing Theory

Author: Jyotiprasad Medhi

Publisher: Elsevier

Published: 2002-11-06

Total Pages: 501

ISBN-13: 008054181X

DOWNLOAD EBOOK

This is a graduate level textbook that covers the fundamental topics in queuing theory. The book has a broad coverage of methods to calculate important probabilities, and gives attention to proving the general theorems. It includes many recent topics, such as server-vacation models, diffusion approximations and optimal operating policies, and more about bulk-arrival and bull-service models than other general texts. - Current, clear and comprehensive coverage - A wealth of interesting and relevant examples and exercises to reinforce concepts - Reference lists provided after each chapter for further investigation