A Nobel Laureate presents his view of developments in the field of superconductivity, superfluidity and related theory. The book contains Ginzburg’s amended version of the Nobel lecture in Physics 2003, as well as his expanded autobiography.
Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in supe
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
This book, in essence the proceedings of a NATO Advanced Study Institute with the same title, is designed to provide in-depth coverage of many, but not all, of the major current applications of superconductivity, and of many that still are being developed. It will be of value to scientists and engineers who have interests in the research and production aspects of the technology, as well as in the applications themselves. The ftrst three chapters (by Clarke, Vrba and Wikswo) are devoted to an understanding of the principles, fabrication and uses of SQUID magnetometers and gradiometers, with the greatest emphasis on biomagnetism and nondestructive evaluation (NDE). For the most part, traditional low-temperature superconductor (LTS) SQUIDs are used, but particularly for NDE, high-temperature superconductor (HTS) SQUIDs are proving useful and often more convenient. The succeeding three chapters (by Przybysz, Likharev and Chaloupka) cover broader aspects of superconducting electronics. The ftrst two of these deal primarily with digital L TS circuits, while the third discusses in great detail passive component applications using HTS materials. Currently, HTS ftlters are undergoing intense J3-site testing at cellular telephone base stations. While it is clear that HTS ftlters outperform conventional ftlters in reducing signal loss and allowing for more channels in a given bandwidth, it isn't yet certain that the cellular telephone industry sees sufficient economic beneftts to make a ftrm decision to use HTS ftlters universally in its systems. If this application is generally adapted, the market for these ftlters should be quite large.
This book is a collection of the chapters intended to study only practical applications of HTS materials. You will find here a great number of research on actual applications of HTS as well as possible future applications of HTS. Depending on the strength of the applied magnetic field, applications of HTS may be divided in two groups: large scale applications (large magnetic fields) and small scale applications (small magnetic fields). 12 chapters in the book are fascinating studies about large scale applications as well as small scale applications of HTS. Some chapters are presenting interesting research on the synthesis of special materials that may be useful in practical applications of HTS. There are also research about properties of high-Tc superconductors and experimental research about HTS materials with potential applications. The future of practical applications of HTS materials is very exciting. I hope that this book will be useful in the research of new radical solutions for practical applications of HTS materials and that it will encourage further experimental research of HTS materials with potential technological applications.
This well-respected and established standard work, which has been successful for over three decades, offers a comprehensive introduction into the topic of superconductivity, including its latest developments and applications. The book has been completely revised and thoroughly expanded by Professor Reinhold Kleiner. By dispensing with complicated mathematical derivations, this book is of interest to both science and engineering students. For almost three decades now, the German version of this book - currently in its sixth edition - has been established as one of the state of the art works on superconductivity.
Theory of Superconductivity is primarily intended to serve as a background for reading the literature in which detailed applications of the microscopic theory of superconductivity are made to specific problems.
The development of high temperature superconductors is one of the major technological discoveries of this century. The impact and interactions from the scientific, technical, business and political aspects will be presented.
The genesis of the NATO Advanced Study Institute (ASI) upon which this volume is based, occurred during the summer of 1986 when we came to the realization that there had been significant progress during the early 1980's in the field of superconducting electronics and in applications of this technology. Despite this progress, there was a perception among many engineers and scientists that, with the possible exception of a limited number of esoteric fundamental studies and applications (e.g., the Josephson voltage standard or the SQUID magnetometer), there was no significant future for electronic systems incorporating superconducting elements. One of the major reasons for this perception was the aversion to handling liquid helium or including a closed-cycle helium liquefier. In addition, many critics felt that IBM's cancellation of its superconducting computer project in 1983 was "proof" that superconductors could not possibly compete with semiconductors in high-speed signal processing. From our perspective, the need for liquid helium was outweighed by improved performance, i. e., higher speed, lower noise, greater sensitivity and much lower power dissipation. For many commercial, medical, scientific and military applications, these attributes can lead to either enhanced capability (e.g., compact real-time signal processing) or measurements that cannot be made using any other technology (e.g., SQUID magnetometry to detect neuromagnetic activity).