Real Time Dynamic State Estimation

Real Time Dynamic State Estimation

Author: Safoan Al-halali

Publisher:

Published: 2018

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Since the state estimation algorithm has been firstly proposed, considerable research interest has been shown in adapting and applying the different versions of this algorithm to the power transmission systems. Those applications include power system state estimation (PSSE) and short-term operational planning. In the transmission level, state estimation offers various applications including, process monitoring and security monitoring. Recently, distribution systems experience a much higher level of variability and complexity due to the large increase in the penetration level of distributed energy resources (DER), such as distributed generation (DG), demand-responsive loads, and storage devices. The first step, for better situational awareness at the distribution level, is to adapt the most developed real time state estimation algorithm to distribution systems, including distribution system state estimation (DSSE). DSSE has an important role in the operation of the distribution systems. Motivated by the increasing need for robust and accurate real time state estimators, capable of capturing the dynamics of system states and suitable for large-scale distribution networks with a lack of sensors, this thesis introduces a three state estimators based on a distributed approach. The first proposed estimator technique is the square root cubature Kalman filter (SCKF), which is the improved version of cubature Kalman filter (CKF). The second one is based on a combination of the particle filter (PF) and the SCKF, which yields a square root cubature particle filter (SCPF). This technique employs a PF with the proposal distribution provided by the SCKF. Additionally, a combination of PF and CKF, which yields a cubature particle filter (CPF) is proposed. Unlike the other types of filters, the PF is a non-Gaussian algorithm from which a true posterior distribution of the estimated states can be obtained. This permits the replacement of real measurements with pseudo-measurements and allows the calculation to be applied to large-scale networks with a high degree of nonlinearity. This research also provides a comparison study between the above mentioned algorithms and the latest algorithms available in the literature. To validate their robustness and accuracy, the proposed methods were tested and verified using a large range of customer loads with 50 % uncertainty on a connected IEEE 123-bus system. Next, a developed foretasted aided state estimator is proposed. The foretasted aided state estimator is needed to increase the immunization of the state estimator against the delay and loss of the real measurements, due to the sensors malfunction or communication failure. Moreover, due to the lack of measurements in the electrical distribution system, the pseudo-measurements are needed to insure the observability of the state estimator. Therefore, the very short term load forecasting algorithm that insures the observability and provides reliable backup data in case of sensor malfunction or communication failure is proposed. The proposed very short term load forecasting is based on the wavelet recurrent neural network (WRNN). The historical data used to train the RNN are decomposed into low-frequency, low-high frequency and high frequency components. The neural networks are trained using an extended Kalman filter (EKF) for the low frequency component and using a square root cubature Kalman filter (SCKF) for both low-high frequency and high frequency components. To estimate the system states, state estimation algorithm based SCKF is used. The results demonstrate the theoretical and practical advantages of the proposed methodology. Finally, in recent years several cyber-attacks have been recorded against sensitive monitoring systems. Among them is the automatic generation control (AGC) system, a fundamental control system used in all power networks to keep the network frequency at its desired value and for maintaining tie line power exchanges at their scheduled values. Motivated by the increasing need for robust and safe operation of AGCs, this thesis introduces an attack resilient control scheme for the AGC system based on attack detection using real time state estimation. The proposed approach requires redundancy of sensors available at the transmission level in the power network and leverages recent results on attack detection using mixed integer linear programming (MILP). The proposed algorithm detects and identifies the sensors under attack in the presence of noise. The non-attacked sensors are then averaged and made available to the feedback controller. No assumptions about the nature of the attack signal are made. The proposed method is simulated using a large range of attack signals and uncertain sensors measurements. All the proposed algorithms were implemented in MATLAB to verify their theoretical expectations.


Power Distribution System State Estimation

Power Distribution System State Estimation

Author: Elizete Maria Lourenço

Publisher: IET

Published: 2022-11-07

Total Pages: 386

ISBN-13: 1839532017

DOWNLOAD EBOOK

This book is a systematic reference guide to state estimation for power systems. Written by experts from industry and academia, this book covers crucial technology for controlling power systems with distributed generation. Chapters cover several modelling methods as well real-time monitoring and practical lessons.


Advances in State Estimation, Diagnosis and Control of Complex Systems

Advances in State Estimation, Diagnosis and Control of Complex Systems

Author: Ye Wang

Publisher: Springer Nature

Published: 2020-07-30

Total Pages: 252

ISBN-13: 303052440X

DOWNLOAD EBOOK

This book presents theoretical and practical findings on the state estimation, diagnosis and control of complex systems, especially in the mathematical form of descriptor systems. The research is fully motivated by real-world applications (i.e., Barcelona’s water distribution network), which require control systems capable of taking into account their specific features and the limits of operations in the presence of uncertainties stemming from modeling errors and component malfunctions. Accordingly, the book first introduces a complete set-based framework for explicitly describing the effects of uncertainties in the descriptor systems discussed. In turn, this set-based framework is used for state estimation and diagnosis. The book also presents a number of application results on economic model predictive control from actual water distribution networks and smart grids. Moreover, the book introduces a fault-tolerant control strategy based on virtual actuators and sensors for such systems in the descriptor form.


Static State Estimation for Power Systems

Static State Estimation for Power Systems

Author: Ehab E. Elattar

Publisher: LAP Lambert Academic Publishing

Published: 2014-02-24

Total Pages: 132

ISBN-13: 9783659182976

DOWNLOAD EBOOK

The heart of the data processing activities of a modern electric utility energy control center is the power system state estimator. A state estimator provides the same information on-line that are provided by a load flow study off-line. This information is used for contingency evaluation, security assessment, control strategy and economic dispatch. An energy control center gathers information on the state of a power system that may include large errors which called bad data. In view of the above consideration, it is necessary to have a method to establish a reliable and complete data base for on-line monitoring and control. In this book, the fast supper decoupled state (FSDS) estimator is developed and applied to systems having low as well as high R/X ratio lines, well-behaved systems, ill-conditioned systems as well as bad data processing. The FSDS estimator is investigated using a single-rotation angle for all measurements. Comparisons are made with respect to the fast decoupled state estimator. The FSDS estimator is found to be efficient and effective especially for systems having high R/X ratio lines, ill-conditioned system and bad data.


Event-Trigger Dynamic State Estimation for Practical WAMS Applications in Smart Grid

Event-Trigger Dynamic State Estimation for Practical WAMS Applications in Smart Grid

Author: Zhen Li

Publisher: Springer Nature

Published: 2020-06-03

Total Pages: 294

ISBN-13: 3030456587

DOWNLOAD EBOOK

This book describes how dynamic state estimation application in wide-area measurement systems (WAMS) are crucial for power system reliability, to acquire precisely power system dynamics. The event trigger DSE techniques described by the authors provide a design balance between the communication rate and estimation performance, by selectively sending the innovational data. The discussion also includes practical problems for smart grid applications, such as the non-Gaussian process/measurement noise, packet dropout, computation burden of accurate DSE, robustness to the system variation, etc. Readers will learn how the event trigger DSE can facilitate the effective reduction of communication rates, with guaranteed accuracy under a variety of practical conditions in smart grid applications.


State Estimation for Enhanced Monitoring, Reliability, Restoration and Control of Smart Distribution Systems

State Estimation for Enhanced Monitoring, Reliability, Restoration and Control of Smart Distribution Systems

Author: Daniel Andrew Haughton

Publisher:

Published: 2012

Total Pages: 193

ISBN-13:

DOWNLOAD EBOOK

The Smart Grid initiative describes the collaborative effort to modernize the U.S. electric power infrastructure. Modernization efforts incorporate digital data and information technology to effectuate control, enhance reliability, encourage small customer sited distributed generation (DG), and better utilize assets. The Smart Grid environment is envisioned to include distributed generation, flexible and controllable loads, bidirectional communications using smart meters and other technologies. Sensory technology may be utilized as a tool that enhances operation including operation of the distribution system. Addressing this point, a distribution system state estimation algorithm is developed in this thesis. The state estimation algorithm developed here utilizes distribution system modeling techniques to calculate a vector of state variables for a given set of measurements. Measurements include active and reactive power flows, voltage and current magnitudes, phasor voltages with magnitude and angle information. The state estimator is envisioned as a tool embedded in distribution substation computers as part of distribution management systems (DMS); the estimator acts as a supervisory layer for a number of applications including automation (DA), energy management, control and switching. The distribution system state estimator is developed in full three-phase detail, and the effect of mutual coupling and single-phase laterals and loads on the solution is calculated. The network model comprises a full three-phase admittance matrix and a subset of equations that relates measurements to system states. Network equations and variables are represented in rectangular form. Thus a linear calculation procedure may be employed. When initialized to the vector of measured quantities and approximated non-metered load values, the calculation procedure is non-iterative. This dissertation presents background information used to develop the state estimation algorithm, considerations for distribution system modeling, and the formulation of the state estimator. Estimator performance for various power system test beds is investigated. Sample applications of the estimator to Smart Grid systems are presented. Applications include monitoring, enabling demand response (DR), voltage unbalance mitigation, and enhancing voltage control. Illustrations of these applications are shown. Also, examples of enhanced reliability and restoration using a sensory based automation infrastructure are shown.


State Estimation in Power Distribution Systems

State Estimation in Power Distribution Systems

Author: Côme Carquex

Publisher:

Published: 2017

Total Pages: 47

ISBN-13:

DOWNLOAD EBOOK

State estimation in power distribution systems is a key component for increased reliability and optimal system performance. Well understood in transmission systems, state estimation is now an area of active research in distribution networks. While several snapshot-based approaches have been used to solve this problem, few solutions have been proposed in a dynamic framework. In this thesis, a Past-Aware State Estimation (PASE) method is proposed for distribution systems that takes previous estimates into account to improve the accuracy of the current one, using an Ensemble Kalman Filter. Fewer phasor measurements units (PMU) are needed to achieve the same estimation error target than snapshot-based methods. Contrary to current methods, the proposed solution does not embed power flow equations into the estimator. A theoretical formulation is presented to compute a priori the advantages of the proposed method vis-a-vis the state-of-the-art. The proposed approach is validated considering the 33-bus distribution system and using power consumption traces from real households. Engineering insights are presented highlighting the major trade-offs in the choice of decision variables (number of PMUs, PMU accuracy, estimation time-step - i.e. elapsed time between two consecutive estimations) for the LDC: using a smaller time-step allows the LDC to relax the requirements on the PMU quality and their number.


Robust Dynamic State Estimation of Power Systems

Robust Dynamic State Estimation of Power Systems

Author: Junbo Zhao

Publisher: Elsevier

Published: 2023-06-01

Total Pages: 0

ISBN-13: 0323859070

DOWNLOAD EBOOK

Robust Dynamic State Estimation of Power Systems demonstrates how to implement and apply robust dynamic state estimators to problems in modern power systems, thereby bridging the literatures of dynamic state estimation and robust estimation theory. The book presents Kalman filter algorithms, demonstrating how to build powerful, robust counterparts. Following sections build out case study-based implementations of robust Kalman filters to decontextualized applications across dynamic state estimation in power systems. Coverage encompasses theoretical backgrounds, motivations, problem formulation, implementations, uncertainties, anomalies and practical applications, such as generator parameter calibration, unknown inputs estimation, control failure detection, protection, and cyberattack detection. Future research topics are identified and discussed, including open research questions. The book will serve as a key reference for power system real-time monitoring, control center engineers, and graduate students for learning (course related work) and research. Elucidates theoretical motivations, definitions, formulations, and robustness enhancement Engages with emerging practical problems in the application of dynamic state estimation through case studies Provides a roadmap for the transition of DSE concepts to practical implementations and applications Develops advanced robust statistics theory and uncertainty management methods