Photonic Signal Processing

Photonic Signal Processing

Author: Le Nguyen Binh

Publisher: CRC Press

Published: 2018-10-03

Total Pages: 382

ISBN-13: 142001952X

DOWNLOAD EBOOK

The potential of photonic signal processing (PSP) to overcome electronic limits for processing ultra-wideband signals, provide signal conditioning that can be integrated in line with fiber optic systems, and improve signal quality makes this technology extremely attractive for improvement in receiver sensitivity performance. Spanning the current transitional period, Photonic Signal Processing: Techniques and Applications addresses the merging techniques of processing and manipulating signals propagating in the optical domain. The book begins with a historical perspective of PSP and introduces photonic components essential for photonic processing systems, such as optical amplification devices, optical fibers, and optical modulators. The author demonstrates the representation of photonic circuits via a signal flow graph technique adapted for photonic domain. He describes photonic signal processors, such as differentiators and integrators, and their applications for the generation of solitons, and then covers the application of these solitons in optically amplified fiber transmission systems. The book illustrates the compensation dispersion using a photonic processor, the design of optical filters using photonic processor techniques, and the filtering of microwave signals in the optical domain. Exploring methods for the processing of signals in the optical domain, the book includes solutions to photonic circuits that use signal flow techniques and significant applications in short pulse generation, the filtering of signals, differentiation, and the integration of signals. It delineates fundamental techniques on the processing of signals in the optical domain as well as their applications that lead to advanced aspects of performing generation of short pulses, integration, differentiation, and filtering for optical communications systems and networks and processing of ultra-high speed signals.


Digital Signal Processing For High-speed Optical Communication

Digital Signal Processing For High-speed Optical Communication

Author: Jianjun Yu

Publisher: World Scientific Publishing Company

Published: 2018-03-09

Total Pages: 340

ISBN-13: 9813233990

DOWNLOAD EBOOK

There is an increasing tendency to integrate optical communication with wireless communication to satisfy continuously emerging (new) data communication demands. Thus, optical-wireless-integrated access networks and transmission systems, as well as LED-based visible light communication are attracting ever increasing research interest. Digital signal processing (DSP) is one new technology for optical transmission. As such this book is designed to pave the way to the better understanding of the deployment of DSP in optical fiber communication systems.Digital Signal Processing for High-Speed Optical Communication covers a wide area of DSP topics in optical communications, and describes state-of-the-art digital signal processing techniques for high-speed optical communication. In this book, numerous advanced digital signal processing techniques aiming at the promotion of the capacity increase and performance improvement of optical or optical-wireless communication systems and networks are presented and explained. Coverage includes new technologies, optical filter with MLSE, and new pre-coding and pre-equalization applicable to single-carrier and multi-carrier, direct-detection and coherent-detection optical commutation systems and networks.


Photonic Signal Processing

Photonic Signal Processing

Author: Le Nguyen Binh

Publisher: CRC Press

Published: 2019

Total Pages: 506

ISBN-13: 9780429792618

DOWNLOAD EBOOK

This Second Edition of "Photonic Signal Processing" updates most recent R&D on processing techniques of signals in photonic domain from the fundamentals given in its first edition. Several modern techniques in Photonic Signal Processing (PSP) are described: Graphical signal flow technique to simplify the analysis of the photonic transfer functions, plus its insights into the physical phenomena of such processors. The resonance and interference of optical fields are presented by the poles and zeros of the optical circuits, respectively. Detailed design procedures for fixed and tunable optical filters. These filters, "brick-wall-like", now play a highly important role in ultra-broadband (100GBaud) to spectral shaping of sinc temporal response so as to generate truly Nyquist sampler of the received eye diagrams 3-D PSP allows multi-dimensional processing for highly complex optical signals Photonic differentiators and integrators for dark soliton generations. Optical dispersion compensating processors for ultra-long haul optical transmission systems. Some optical devices essentials for PSP. Many detailed PSP techniques are given in the chapters of this Second Edition.


Dynamic and Wideband Microwave Photonic Signal Processing

Dynamic and Wideband Microwave Photonic Signal Processing

Author: Jia Ge

Publisher:

Published: 2017

Total Pages: 266

ISBN-13:

DOWNLOAD EBOOK

Radio frequency (RF) signal processing is ubiquitous in various fields, where dynamic and wideband processing capabilities are increasingly desired in modern systems. The inherent limitations of electronics make conventional RF signal processing technique lack of tunability, which cannot fulfill the functionalities required in modern systems. Microwave photonics (MWP) - a hybrid signal processing technique, which takes advantages from the unique properties of photonics, making it possible to remove the bottlenecks of electronic system. Here, we draw inspiration from photonics and bring breakthrough functionalities and great improvements to conventional signal processing technique. Various microwave photonic systems are developed and experimentally demonstrated, with great operating flexibility, wide bandwidth, and fast processing speed. The demonstrated systems include gigahertz-speed tunable MWP filters, highly reconfigurable MWP multiband filters, broadband and reconfigurable RF spectral shaper, and RF equalizer. The wideband operation range and extraordinary system flexibility make them suitable for a variety of applications in RF/microwave signal processing and emerging communication systems.


Photonic Signal Processing, Second Edition

Photonic Signal Processing, Second Edition

Author: Le Nguyen Binh

Publisher: CRC Press

Published: 2019-01-15

Total Pages: 537

ISBN-13: 042979262X

DOWNLOAD EBOOK

This Second Edition of "Photonic Signal Processing" updates most recent R&D on processing techniques of signals in photonic domain from the fundamentals given in its first edition. Several modern techniques in Photonic Signal Processing (PSP) are described: Graphical signal flow technique to simplify the analysis of the photonic transfer functions, plus its insights into the physical phenomena of such processors. The resonance and interference of optical fields are presented by the poles and zeros of the optical circuits, respectively. Detailed design procedures for fixed and tunable optical filters. These filters, "brick-wall-like", now play a highly important role in ultra-broadband (100GBaud) to spectral shaping of sinc temporal response so as to generate truly Nyquist sampler of the received eye diagrams 3-D PSP allows multi-dimensional processing for highly complex optical signals Photonic differentiators and integrators for dark soliton generations. Optical dispersion compensating processors for ultra-long haul optical transmission systems. Some optical devices essentials for PSP. Many detailed PSP techniques are given in the chapters of this Second Edition.


Ultra-high Throughput Real-time Instruments for Capturing Fast Signals and Rare Events

Ultra-high Throughput Real-time Instruments for Capturing Fast Signals and Rare Events

Author: Brandon Walter Buckley

Publisher:

Published: 2013

Total Pages: 137

ISBN-13:

DOWNLOAD EBOOK

Wide-band signals play important roles in the most exciting areas of science, engineering, and medicine. To keep up with the demands of exploding internet traffic, modern data centers and communication networks are employing increasingly faster data rates. Wide-band techniques such as pulsed radar jamming and spread spectrum frequency hopping are used on the battlefield to wrestle control of the electromagnetic spectrum. Neurons communicate with each other using transient action potentials that last for only milliseconds at a time. And in the search for rare cells, biologists flow large populations of cells single file down microfluidic channels, interrogating them one-by-one, tens of thousands of times per second. Studying and enabling such high-speed phenomena pose enormous technical challenges. For one, parasitic capacitance inherent in analog electrical components limits their response time. Additionally, converting these fast analog signals to the digital domain requires enormous sampling speeds, which can lead to significant jitter and distortion. State-of-the-art imaging technologies, essential for studying biological dynamics and cells in flow, are limited in speed and sensitivity by finite charge transfer and read rates, and by the small numbers of photo-electrons accumulated in short integration times. And finally, ultra-high throughput real-time digital processing is required at the backend to analyze the streaming data. In this thesis, I discuss my work in developing real-time instruments, employing ultrafast optical techniques, which overcome some of these obstacles. In particular, I use broadband dispersive optics to slow down fast signals to speeds accessible to high-bit depth digitizers and signal processors. I also apply telecommunication multiplexing techniques to boost the speeds of confocal fluorescence microscopy. The photonic time stretcher (TiSER) uses dispersive Fourier transformation to slow down analog signals before digitization and processing. The act of time-stretching effectively boosts the performance of the back-end electronics and digital signal processors. The slowed down signals reach the back-end electronics with reduced bandwidth, and are therefore less affected by high-frequency roll-off and distortion. Time-stretching also increases the effective sampling rate of analog-to-digital converters and reduces aperture jitter, thereby improving resolution. Finally, the instantaneous throughputs of digital signal processors are enhanced by the stretch factor to otherwise unattainable speeds. Leveraging these unique capabilities, TiSER becomes the ideal tool for capturing high-speed signals and characterizing rare phenomena. For this thesis, I have developed techniques to improve the spectral efficiency, bandwidth, and resolution of TiSER using polarization multiplexing, all-optical modulation, and coherent dispersive Fourier transformation. To reduce the latency and improve the data handling capacity, I have also designed and implemented a real-time digital signal processing electronic backend, achieving 1.5 tera-bit per second instantaneous processing throughput. Finally, I will present results from experiments highlighting TiSER's impact in real-world applications. Confocal fluorescence microscopy is the most widely used method for unveiling the molecular composition of biological specimens. However, the weak optical emission of fluorescent probes and the tradeoff between imaging speed and sensitivity is problematic for acquiring blur-free images of fast phenomena and cells flowing at high speed. Here I introduce a new fluorescence imaging modality, which leverages techniques from wireless communication to reach record pixel and frame rates. Termed Fluorescence Imaging using Radio-frequency tagged Emission (FIRE), this new imaging modality is capable of resolving never before seen dynamics in living cells - such as action potentials in neurons and metabolic waves in astrocytes - as well as performing high-content image assays of cells and particles in high-speed flow.


Microwave Photonics

Microwave Photonics

Author: Jianping Yao

Publisher: John Wiley & Sons

Published: 2024-03-26

Total Pages: 501

ISBN-13: 1394205287

DOWNLOAD EBOOK

MICROWAVE PHOTONICS Overview of techniques in the field of microwave photonics, including recent developments in quantum microwave photonics and integrated microwave photonics Microwave Photonics offers a comprehensive overview of the microwave photonic techniques developed in the last 30 years, covering topics such as photonics generation of microwave signals, photonics processing of microwave signals, photonics distribution of microwave signals, photonic generation and distribution of UWB signals, photonics generation and processing of arbitrary microwave waveforms, photonic true time delay beamforming for phased array antennas, photonics-assisted instantaneous microwave frequency measurement, quantum microwave photonics, analog-to-digital conversion and more. The text is supported by a companion website for instructors, including learning objectives and questions/problems to further enhance student learning. Written by key researchers in the field, Microwave Photonics includes information on: Group-velocity dispersion and nonlinear effects in fibers, light coherence in light sources, phase and intensity modulators, photodetectors, and fiber Bragg gratings Injection locking, phase lock loops, external modulation, opto-electronic oscillators, and array waveguide gratings Photonic microwave delay-line filters with negative and complex coefficients and non-uniformly spaced photonic microwave delay-line filters Double- and single-sideband modulation, radio over fiber networks, and microwave photonics to coherent communication systems UWB generation, coding, and distribution over fiber, and instantaneous microwave frequency measurement via power monitoring True time delay beamforming Exploring the subject in depth, with expansive coverage of techniques developed in the last 30 years, Microwave Photonics is an essential reference for graduate students and researchers to learn microwave photonic technologies.


Wireless and Guided Wave Electromagnetics

Wireless and Guided Wave Electromagnetics

Author: Le Nguyen Binh

Publisher: CRC Press

Published: 2017-07-12

Total Pages: 403

ISBN-13: 1439847541

DOWNLOAD EBOOK

Wireless communications allow high-speed mobile access to a global Internet based on ultra-wideband backbone intercontinental and terrestrial networks. Both of these environments support the carrying of information via electromagnetic waves that are wireless (in free air) or guided through optical fibers. Wireless and Guided Wave Electromagnetics: Fundamentals and Applications explores the fundamental aspects of electromagnetic waves in wireless media and wired guided media. This is an essential subject for engineers and physicists working with communication technologies, mobile networks, and optical communications. This comprehensive book: Builds from the basics to modern topics in electromagnetics for wireless and optical fiber communication Examines wireless radiation and the guiding of optical waves, which are crucial for carrying high-speed information in long-reach optical networking scenarios Explains the physical phenomena and practical aspects of guiding optical waves that may not require detailed electromagnetic solutions Explores applications of electromagnetic waves in optical communication systems and networks based on frequency domain transfer functions in the linear regions, which simplifies the physical complexity of the waves but still allows them to be examined from a system engineering perspective Uses MATLAB® and Simulink® models to simulate and illustrate the electromagnetic fields Includes worked examples, laboratory exercises, and problem sets to test understanding The book’s modular structure makes it suitable for a variety of courses, for self-study, or as a resource for research and development. Throughout, the author emphasizes issues commonly faced by engineers. Going a step beyond traditional electromagnetics textbooks, this book highlights specific uses of electromagnetic waves with a focus on the wireless and optical technologies that are increasingly important for high-speed transmission over very long distances.


Wideband Radar

Wideband Radar

Author: Teng Long

Publisher: Springer Nature

Published: 2022-12-09

Total Pages: 200

ISBN-13: 9811975612

DOWNLOAD EBOOK

Wideband Radar focuses on system theories and signal processing techniques for wideband radar systems. Author Professor Teng Long and his fellows present a comprehensive introduction to the fundamental theory, latest technology developments in signal processing and recent progresses in civil applications of wideband radar. Each chapter begins with an introduction describing what a reader will find in that chapter. The book is addressed to all scientists, whether at universities or in industry, who wish to keep abreast of the important advances in wideband radar. We look forward to further excitement ahead and new developments in wideband radar, and we hope to share them with you, our esteemed readers.