This is the only handbook available on X-ray data. In a concise and informative manner, the most important data connected with the emission of characteristic X-ray lines are tabulated for all elements up to Z = 95 (Americium). The tabulated data are characterized and, in most cases, evaluated. Furthermore, all important processes and phenomena connected with the production, emission and detection of characteristic X-rays are discussed.
This is the first ever comprehensive treatment of NEXAFS spectroscopy. It is suitable for novice researchers as an introduction to the field, while experts will welcome the detailed description of state-of-the-art instrumentation and analysis techniques, along with the latest experimental and theoretical results.
Core level spectroscopy has become a powerful tool in the study of electronic states in solids. From fundamental aspects to the most recent developments, Core Level Spectroscopy of Solids presents the theoretical calculations, experimental data, and underlying physics of x-ray photoemission spectroscopy (XPS), x-ray absorption spectroscopy (XAS), x
Hardly any other discovery of the nineteenth century did have such an impact on science and technology as Wilhelm Conrad Röntgen’s seminal find of the X-rays. X-ray tubes soon made their way as excellent instruments for numerous applications in medicine, biology, materials science and testing, chemistry and public security. Developing new radiation sources with higher brilliance and much extended spectral range resulted in stunning developments like the electron synchrotron and electron storage ring and the freeelectron laser. This handbook highlights these developments in fifty chapters. The reader is given not only an inside view of exciting science areas but also of design concepts for the most advanced light sources. The theory of synchrotron radiation and of the freeelectron laser, design examples and the technology basis are presented. The handbook presents advanced concepts like seeding and harmonic generation, the booming field of Terahertz radiation sources and upcoming brilliant light sources driven by laser-plasma accelerators. The applications of the most advanced light sources and the advent of nanobeams and fully coherent x-rays allow experiments from which scientists in the past could not even dream. Examples are the diffraction with nanometer resolution, imaging with a full 3D reconstruction of the object from a diffraction pattern, measuring the disorder in liquids with high spatial and temporal resolution. The 20th century was dedicated to the development and improvement of synchrotron light sources with an ever ongoing increase of brilliance. With ultrahigh brilliance sources, the 21st century will be the century of x-ray lasers and their applications. Thus, we are already close to the dream of condensed matter and biophysics: imaging single (macro)molecules and measuring their dynamics on the femtosecond timescale to produce movies with atomic resolution.
This book provides and elementary introduction to the field of trapping highly charged ions. The first group of chapters is intended to describe the various sorts of highly charged ion traps: EBIT, EBIS, ECR, Storage Rings and various speciality traps. The authors focus on their own ion trap facilities in order to teach by example. The chapters range in scope from comprehensive reviews to brief introductions. The second group of chapters is intended to give a flavour of the various sorts of scientific research which are presently being carried out with traps for highly charged ions. These chapters not only inform, but also stimulate newcomers to think up fresh ideas. The articles in this second group generally fall into one of three broad categories: atomic structure experiments, ion-surface interactions and precision mass spectrometry. The third group of chapters is intended to deal with theory and spectroscopic analysis. It provides some of the background material necessary to make sense of observed phenomenology, to allow detailed explanation of experimental data, and to sensibly plan further experimentation. An appendix provides a complete keyword-annotated bibliography of pa
This book has grown out of our shared experience in the development of the Stanford Synchrotron Radiation Laboratory (SSRL), based on the electron-positron storage ring SPEAR at the Stanford Linear Accelerator Center (SLAC) starting in Summer, 1973. The immense potential of the photon beam from SPEAR became obvious as soon as experiments using the beam started to run in May, 1974. The rapid growth of interest in using the beam since that time and the growth of other facilities using high-energy storage rings (see Chapters 1 and 3) demonstrates how the users of this source of radiation are finding applications in an increasingly wide variety of fields of science and technology. In assembling the list of authors for this book, we have tried to cover as many of the applications of synchrotron radiation, both realized already or in the process of realization, as we can. Inevitably, there are omissions both through lack of space and because many projects are at an early stage. We thank the authors for their efforts and cooperation in producing what we believe is the most comprehensive treatment of synchrotron radiation research to date.
Synchroton radiation is the most important new source of electromagnetic radiation and has drastically transformed the study of the properties of materials. This book presents the properties of synchroton radiation in a clear and self-contained way and explains the advanced techniques which are required for its production.
The Free Electron Laser (FEL) will be a crucial tool for research and industrial applications. This book describes the physical fundamentals of FELs on the basis of classical mechanics, electrodynamics, and the kinetic theory of charged particle beams, and will be suitable for graduate students and scientists alike. After a short introduction, the book discusses the theory of the FEL amplifier and oscillator, diffraction effects in the amplifier, and waveguide FEL.
This book introduces the reader to the basic concepts of the generation and manipulation of synchrotron light, its interaction with matter, and the application of synchrotron light in the “classical” techniques, while including some of the most modern technological developments. As much as possible, complicated mathematical derivations and formulas are avoided. A more heuristic approach is adopted, whereby the general physical reasoning behind the equations is highlighted. Key features: A general introduction to synchrotron radiation and experimental techniques using synchrotron radiation Contains many detailed “worked examples” from the literature Of interest for a broad audience - synchrotrons are possibly one of the best examples of multidisciplinary research Four-colour presentation throughout