High Performance Integrated Circuit Design

High Performance Integrated Circuit Design

Author: Emre Salman

Publisher: McGraw Hill Professional

Published: 2012-08-21

Total Pages: 738

ISBN-13: 0071635769

DOWNLOAD EBOOK

The latest techniques for designing robust, high performance integrated circuits in nanoscale technologies Focusing on a new technological paradigm, this practical guide describes the interconnect-centric design methodologies that are now the major focus of nanoscale integrated circuits (ICs). High Performance Integrated Circuit Design begins by discussing the dominant role of on-chip interconnects and provides an overview of technology scaling. The book goes on to cover data signaling, power management, synchronization, and substrate-aware design. Specific design constraints and methodologies unique to each type of interconnect are addressed. This comprehensive volume also explains the design of specialized circuits such as tapered buffers and repeaters for data signaling, voltage regulators for power management, and phase-locked loops for synchronization. This is an invaluable resource for students, researchers, and engineers working in the area of high performance ICs. Coverage includes: Technology scaling Interconnect modeling and extraction Signal propagation and delay analysis Interconnect coupling noise Global signaling Power generation Power distribution networks CAD of power networks Techniques to reduce power supply noise Power dissipation Synchronization theory and tradeoffs Synchronous system characteristics On-chip clock generation and distribution Substrate noise in mixed-signal ICs Techniques to reduce substrate noise


Power Distribution Networks in High Speed Integrated Circuits

Power Distribution Networks in High Speed Integrated Circuits

Author: Andrey Mezhiba

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 287

ISBN-13: 146150399X

DOWNLOAD EBOOK

Distributing power in high speed, high complexity integrated circuits has become a challenging task as power levels exceeding tens of watts have become commonplace while the power supply is plunging toward one volt. This book is dedicated to this important subject. The primary purpose of this monograph is to provide insight and intuition into the behavior and design of power distribution systems for high speed, high complexity integrated circuits.


On-Chip Power Delivery and Management

On-Chip Power Delivery and Management

Author: Inna P. Vaisband

Publisher: Springer

Published: 2016-04-26

Total Pages: 750

ISBN-13: 3319293958

DOWNLOAD EBOOK

This book describes methods for distributing power in high speed, high complexity integrated circuits with power levels exceeding many tens of watts and power supplies below a volt. It provides a broad and cohesive treatment of power delivery and management systems and related design problems, including both circuit network models and design techniques for on-chip decoupling capacitors, providing insight and intuition into the behavior and design of on-chip power distribution systems. Organized into subareas to provide a more intuitive flow to the reader, this fourth edition adds more than a hundred pages of new content, including inductance models for interdigitated structures, design strategies for multi-layer power grids, advanced methods for efficient power grid design and analysis, and methodologies for simultaneously placing on-chip multiple power supplies and decoupling capacitors. The emphasis of this additional material is on managing the complexity of on-chip power distribution networks.


Power Integrity for Nanoscale Integrated Systems

Power Integrity for Nanoscale Integrated Systems

Author: Masanori Hashimoto

Publisher: McGraw Hill Professional

Published: 2014-03-07

Total Pages: 417

ISBN-13: 0071787771

DOWNLOAD EBOOK

Proven methods for noise-tolerant nanoscale integrated circuit design This leading-edge guide discusses the impact of power integrity from a design perspective, emphasizing phenomena and problems induced by power integrity degradation and the latest design trends, including low-power design. Power Integrity for Nanoscale Integrated Systems describes how these problems can be forecast early in the design process and the countermeasures that can be used to address them, such as the inclusion of inductance and accurate modeling for PI analysis, as well as robust circuit design. Detailed examples and a case study on the IBM POWER7+ processor illustrate real-world applications of the techniques presented in this practical resource. Coverage includes: Significance of power integrity for integrated circuits Supply and substrate noise impact on circuits Clock generation and distribution with power integrity Signal and power integrity design for I/O circuits Power integrity degradation and modeling Lumped, distributed, and 3D modeling for power integrity Chip temperature and PI impact Low-power techniques and PI impact Power integrity case study using the IBM POWER7+ processor chip Carbon nanotube interconnects for power delivery


Power Distribution Networks with On-Chip Decoupling Capacitors

Power Distribution Networks with On-Chip Decoupling Capacitors

Author: Mikhail Popovich

Publisher: Springer Science & Business Media

Published: 2007-10-08

Total Pages: 532

ISBN-13: 0387716017

DOWNLOAD EBOOK

This book provides insight into the behavior and design of power distribution systems for high speed, high complexity integrated circuits. Also presented are criteria for estimating minimum required on-chip decoupling capacitance. Techniques and algorithms for computer-aided design of on-chip power distribution networks are also described; however, the emphasis is on developing circuit intuition and understanding the principles that govern the design and operation of power distribution systems.


Power Distribution Networks with On-Chip Decoupling Capacitors

Power Distribution Networks with On-Chip Decoupling Capacitors

Author: Renatas Jakushokas

Publisher: Springer Science & Business Media

Published: 2010-11-23

Total Pages: 636

ISBN-13: 1441978712

DOWNLOAD EBOOK

This book describes methods for distributing power in high speed, high complexity integrated circuits with power levels exceeding many tens of watts and power supplies below a volt. It provides a broad and cohesive treatment of power distribution systems and related design problems, including both circuit network models and design techniques for on-chip decoupling capacitors, providing insight and intuition into the behavior and design of on-chip power distribution systems. Organized into subareas to provide a more intuitive flow to the reader, this second edition adds more than a hundred pages of new content, including inductance models for interdigitated structures, design strategies for multi-layer power grids, advanced methods for efficient power grid design and analysis, and methodologies for simultaneously placing on-chip multiple power supplies and decoupling capacitors. The emphasis of this additional material is on managing the complexity of on-chip power distribution networks.


Circuits at the Nanoscale

Circuits at the Nanoscale

Author: Krzysztof Iniewski

Publisher: CRC Press

Published: 2018-10-08

Total Pages: 669

ISBN-13: 1351834657

DOWNLOAD EBOOK

Circuits for Emerging Technologies Beyond CMOS New exciting opportunities are abounding in the field of body area networks, wireless communications, data networking, and optical imaging. In response to these developments, top-notch international experts in industry and academia present Circuits at the Nanoscale: Communications, Imaging, and Sensing. This volume, unique in both its scope and its focus, addresses the state-of-the-art in integrated circuit design in the context of emerging systems. A must for anyone serious about circuit design for future technologies, this book discusses emerging materials that can take system performance beyond standard CMOS. These include Silicon on Insulator (SOI), Silicon Germanium (SiGe), and Indium Phosphide (InP). Three-dimensional CMOS integration and co-integration with Microelectromechanical (MEMS) technology and radiation sensors are described as well. Topics in the book are divided into comprehensive sections on emerging design techniques, mixed-signal CMOS circuits, circuits for communications, and circuits for imaging and sensing. Dr. Krzysztof Iniewski is a director at CMOS Emerging Technologies, Inc., a consulting company in Vancouver, British Columbia. His current research interests are in VLSI ciruits for medical applications. He has published over 100 research papers in international journals and conferences, and he holds 18 international patents granted in the United States, Canada, France, Germany, and Japan. In this volume, he has assembled the contributions of over 60 world-reknown experts who are at the top of their field in the world of circuit design, advancing the bank of knowledge for all who work in this exciting and burgeoning area.


Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications

Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications

Author: Yosi Shacham-Diamand

Publisher: Springer Science & Business Media

Published: 2009-09-19

Total Pages: 545

ISBN-13: 0387958681

DOWNLOAD EBOOK

In Advanced ULSI interconnects – fundamentals and applications we bring a comprehensive description of copper-based interconnect technology for ultra-lar- scale integration (ULSI) technology for integrated circuit (IC) application. In- grated circuit technology is the base for all modern electronics systems. You can ?nd electronics systems today everywhere: from toys and home appliances to a- planes and space shuttles. Electronics systems form the hardware that together with software are the bases of the modern information society. The rapid growth and vast exploitation of modern electronics system create a strong demand for new and improved electronic circuits as demonstrated by the amazing progress in the ?eld of ULSI technology. This progress is well described by the famous “Moore’s law” which states, in its most general form, that all the metrics that describe integrated circuit performance (e. g. , speed, number of devices, chip area) improve expon- tially as a function of time. For example, the number of components per chip d- bles every 18 months and the critical dimension on a chip has shrunk by 50% every 2 years on average in the last 30 years. This rapid growth in integrated circuits te- nology results in highly complex integrated circuits with an increasing number of interconnects on chips and between the chip and its package. The complexity of the interconnect network on chips involves an increasing number of metal lines per interconnect level, more interconnect levels, and at the same time a reduction in the interconnect line critical dimensions.


Coupled Data Communication Techniques for High-Performance and Low-Power Computing

Coupled Data Communication Techniques for High-Performance and Low-Power Computing

Author: Ron Ho

Publisher: Springer Science & Business Media

Published: 2010-06-03

Total Pages: 214

ISBN-13: 1441965882

DOWNLOAD EBOOK

Wafer-scale integration has long been the dream of system designers. Instead of chopping a wafer into a few hundred or a few thousand chips, one would just connect the circuits on the entire wafer. What an enormous capability wafer-scale integration would offer: all those millions of circuits connected by high-speed on-chip wires. Unfortunately, the best known optical systems can provide suitably ?ne resolution only over an area much smaller than a whole wafer. There is no known way to pattern a whole wafer with transistors and wires small enough for modern circuits. Statistical defects present a ?rmer barrier to wafer-scale integration. Flaws appear regularly in integrated circuits; the larger the circuit area, the more probable there is a ?aw. If such ?aws were the result only of dust one might reduce their numbers, but ?aws are also the inevitable result of small scale. Each feature on a modern integrated circuit is carved out by only a small number of photons in the lithographic process. Each transistor gets its electrical properties from only a small number of impurity atoms in its tiny area. Inevitably, the quantized nature of light and the atomic nature of matter produce statistical variations in both the number of photons de?ning each tiny shape and the number of atoms providing the electrical behavior of tiny transistors. No known way exists to eliminate such statistical variation, nor may any be possible.


Energy Efficient and Reliable Embedded Nanoscale SRAM Design

Energy Efficient and Reliable Embedded Nanoscale SRAM Design

Author: Bhupendra Singh Reniwal

Publisher: CRC Press

Published: 2023-11-30

Total Pages: 213

ISBN-13: 1000985156

DOWNLOAD EBOOK

This reference text covers a wide spectrum for designing robust embedded memory and peripheral circuitry. It will serve as a useful text for senior undergraduate and graduate students and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. Discusses low-power design methodologies for static random-access memory (SRAM) Covers radiation-hardened SRAM design for aerospace applications Focuses on various reliability issues that are faced by submicron technologies Exhibits more stable memory topologies Nanoscale technologies unveiled significant challenges to the design of energy- efficient and reliable SRAMs. This reference text investigates the impact of process variation, leakage, aging, soft errors and related reliability issues in embedded memory and periphery circuitry. The text adopts a unique way to explain the SRAM bitcell, array design, and analysis of its design parameters to meet the sub-nano-regime challenges for complementary metal-oxide semiconductor devices. It comprehensively covers low- power-design methodologies for SRAM, exhibits more stable memory topologies, and radiation-hardened SRAM design for aerospace applications. Every chapter includes a glossary, highlights, a question bank, and problems. The text will serve as a useful text for senior undergraduate students, graduate students, and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. Discussing comprehensive studies of variability-induced failure mechanism in sense amplifiers and power, delay, and read yield trade-offs, this reference text will serve as a useful text for senior undergraduate, graduate students, and professionals in areas including electronics and communications engineering, electrical engineering, mechanical engineering, and aerospace engineering. It covers the development of robust SRAMs, well suited for low-power multi-core processors for wireless sensors node, battery-operated portable devices, personal health care assistants, and smart Internet of Things applications.