High Performance Computing: Technology, Methods and Applications

High Performance Computing: Technology, Methods and Applications

Author: J.J. Dongarra

Publisher: Elsevier

Published: 1995-09-13

Total Pages: 437

ISBN-13: 0080553915

DOWNLOAD EBOOK

High Performance Computing is an integrated computing environment for solving large-scale computational demanding problems in science, engineering and business. Newly emerging areas of HPC applications include medical sciences, transportation, financial operations and advanced human-computer interface such as virtual reality. High performance computing includes computer hardware, software, algorithms, programming tools and environments, plus visualization. The book addresses several of these key components of high performance technology and contains descriptions of the state-of-the-art computer architectures, programming and software tools and innovative applications of parallel computers. In addition, the book includes papers on heterogeneous network-based computing systems and scalability of parallel systems. The reader will find information and data relative to the two main thrusts of high performance computing: the absolute computational performance and that of providing the most cost effective and affordable computing for science, industry and business. The book is recommended for technical as well as management oriented individuals.


High Performance Computing

High Performance Computing

Author: John Levesque

Publisher: CRC Press

Published: 2010-12-14

Total Pages: 244

ISBN-13: 1420077066

DOWNLOAD EBOOK

High Performance Computing: Programming and Applications presents techniques that address new performance issues in the programming of high performance computing (HPC) applications. Omitting tedious details, the book discusses hardware architecture concepts and programming techniques that are the most pertinent to application developers for achievi


High-Performance Computing in Finance

High-Performance Computing in Finance

Author: M. A. H. Dempster

Publisher: CRC Press

Published: 2018-02-21

Total Pages: 648

ISBN-13: 1315354691

DOWNLOAD EBOOK

High-Performance Computing (HPC) delivers higher computational performance to solve problems in science, engineering and finance. There are various HPC resources available for different needs, ranging from cloud computing– that can be used without much expertise and expense – to more tailored hardware, such as Field-Programmable Gate Arrays (FPGAs) or D-Wave’s quantum computer systems. High-Performance Computing in Finance is the first book that provides a state-of-the-art introduction to HPC for finance, capturing both academically and practically relevant problems.


High Performance Computing for Big Data

High Performance Computing for Big Data

Author: Chao Wang

Publisher: CRC Press

Published: 2017-10-16

Total Pages: 360

ISBN-13: 1351651579

DOWNLOAD EBOOK

High-Performance Computing for Big Data: Methodologies and Applications explores emerging high-performance architectures for data-intensive applications, novel efficient analytical strategies to boost data processing, and cutting-edge applications in diverse fields, such as machine learning, life science, neural networks, and neuromorphic engineering. The book is organized into two main sections. The first section covers Big Data architectures, including cloud computing systems, and heterogeneous accelerators. It also covers emerging 3D IC design principles for memory architectures and devices. The second section of the book illustrates emerging and practical applications of Big Data across several domains, including bioinformatics, deep learning, and neuromorphic engineering. Features Covers a wide range of Big Data architectures, including distributed systems like Hadoop/Spark Includes accelerator-based approaches for big data applications such as GPU-based acceleration techniques, and hardware acceleration such as FPGA/CGRA/ASICs Presents emerging memory architectures and devices such as NVM, STT- RAM, 3D IC design principles Describes advanced algorithms for different big data application domains Illustrates novel analytics techniques for Big Data applications, scheduling, mapping, and partitioning methodologies Featuring contributions from leading experts, this book presents state-of-the-art research on the methodologies and applications of high-performance computing for big data applications. About the Editor Dr. Chao Wang is an Associate Professor in the School of Computer Science at the University of Science and Technology of China. He is the Associate Editor of ACM Transactions on Design Automations for Electronics Systems (TODAES), Applied Soft Computing, Microprocessors and Microsystems, IET Computers & Digital Techniques, and International Journal of Electronics. Dr. Chao Wang was the recipient of Youth Innovation Promotion Association, CAS, ACM China Rising Star Honorable Mention (2016), and best IP nomination of DATE 2015. He is now on the CCF Technical Committee on Computer Architecture, CCF Task Force on Formal Methods. He is a Senior Member of IEEE, Senior Member of CCF, and a Senior Member of ACM.


Introduction to High Performance Computing for Scientists and Engineers

Introduction to High Performance Computing for Scientists and Engineers

Author: Georg Hager

Publisher: CRC Press

Published: 2010-07-02

Total Pages: 350

ISBN-13: 1439811938

DOWNLOAD EBOOK

Written by high performance computing (HPC) experts, Introduction to High Performance Computing for Scientists and Engineers provides a solid introduction to current mainstream computer architecture, dominant parallel programming models, and useful optimization strategies for scientific HPC. From working in a scientific computing center, the author


A Practical Approach to High-Performance Computing

A Practical Approach to High-Performance Computing

Author: Sergei Kurgalin

Publisher: Springer Nature

Published: 2019-11-10

Total Pages: 210

ISBN-13: 3030275582

DOWNLOAD EBOOK

The book discusses the fundamentals of high-performance computing. The authors combine visualization, comprehensibility, and strictness in their material presentation, and thus influence the reader towards practical application and learning how to solve real computing problems. They address both key approaches to programming modern computing systems: multithreading-based parallelizing in shared memory systems, and applying message-passing technologies in distributed systems. The book is suitable for undergraduate and graduate students, and for researchers and practitioners engaged with high-performance computing systems. Each chapter begins with a theoretical part, where the relevant terminology is introduced along with the basic theoretical results and methods of parallel programming, and concludes with a list of test questions and problems of varying difficulty. The authors include many solutions and hints, and often sample code.


Advances in High Performance Computing

Advances in High Performance Computing

Author: Ivan Dimov

Publisher: Springer Nature

Published: 2020-08-07

Total Pages: 464

ISBN-13: 3030553477

DOWNLOAD EBOOK

Every day we need to solve large problems for which supercomputers are needed. High performance computing (HPC) is a paradigm that allows to efficiently implement large-scale computational tasks on powerful supercomputers unthinkable without optimization. We try to minimize our effort and to maximize the achieved profit. Many challenging real world problems arising in engineering, economics, medicine and other areas can be formulated as large-scale computational tasks. The volume is a comprehensive collection of extended contributions from the High performance computing conference held in Borovets, Bulgaria, September 2019. This book presents recent advances in high performance computing. The topics of interest included into this volume are: HP software tools, Parallel Algorithms and Scalability, HPC in Big Data analytics, Modelling, Simulation & Optimization in a Data Rich Environment, Advanced numerical methods for HPC, Hybrid parallel or distributed algorithms. The volume is focused on important large-scale applications like Environmental and Climate Modeling, Computational Chemistry and Heuristic Algorithms.


High Performance Computing

High Performance Computing

Author: Thomas Sterling

Publisher: Morgan Kaufmann

Published: 2017-12-05

Total Pages: 720

ISBN-13: 0124202152

DOWNLOAD EBOOK

High Performance Computing: Modern Systems and Practices is a fully comprehensive and easily accessible treatment of high performance computing, covering fundamental concepts and essential knowledge while also providing key skills training. With this book, domain scientists will learn how to use supercomputers as a key tool in their quest for new knowledge. In addition, practicing engineers will discover how supercomputers can employ HPC systems and methods to the design and simulation of innovative products, and students will begin their careers with an understanding of possible directions for future research and development in HPC. Those who maintain and administer commodity clusters will find this textbook provides essential coverage of not only what HPC systems do, but how they are used. - Covers enabling technologies, system architectures and operating systems, parallel programming languages and algorithms, scientific visualization, correctness and performance debugging tools and methods, GPU accelerators and big data problems - Provides numerous examples that explore the basics of supercomputing, while also providing practical training in the real use of high-end computers - Helps users with informative and practical examples that build knowledge and skills through incremental steps - Features sidebars of background and context to present a live history and culture of this unique field - Includes online resources, such as recorded lectures from the authors' HPC courses


Parallel and High Performance Computing

Parallel and High Performance Computing

Author: Robert Robey

Publisher: Simon and Schuster

Published: 2021-08-24

Total Pages: 702

ISBN-13: 1638350388

DOWNLOAD EBOOK

Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. Summary Complex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours—or even days—of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware. About the technology Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency. About the book Parallel and High Performance Computing offers techniques guaranteed to boost your code’s effectiveness. You’ll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You’ll master the data structures and algorithms best suited for high performance computing and learn techniques that save energy on handheld devices. You’ll even run a massive tsunami simulation across a bank of GPUs. What's inside Planning a new parallel project Understanding differences in CPU and GPU architecture Addressing underperforming kernels and loops Managing applications with batch scheduling About the reader For experienced programmers proficient with a high-performance computing language like C, C++, or Fortran. About the author Robert Robey works at Los Alamos National Laboratory and has been active in the field of parallel computing for over 30 years. Yuliana Zamora is currently a PhD student and Siebel Scholar at the University of Chicago, and has lectured on programming modern hardware at numerous national conferences. Table of Contents PART 1 INTRODUCTION TO PARALLEL COMPUTING 1 Why parallel computing? 2 Planning for parallelization 3 Performance limits and profiling 4 Data design and performance models 5 Parallel algorithms and patterns PART 2 CPU: THE PARALLEL WORKHORSE 6 Vectorization: FLOPs for free 7 OpenMP that performs 8 MPI: The parallel backbone PART 3 GPUS: BUILT TO ACCELERATE 9 GPU architectures and concepts 10 GPU programming model 11 Directive-based GPU programming 12 GPU languages: Getting down to basics 13 GPU profiling and tools PART 4 HIGH PERFORMANCE COMPUTING ECOSYSTEMS 14 Affinity: Truce with the kernel 15 Batch schedulers: Bringing order to chaos 16 File operations for a parallel world 17 Tools and resources for better code