Higher-Order Numerical Methods for Transient Wave Equations

Higher-Order Numerical Methods for Transient Wave Equations

Author: Gary Cohen

Publisher: Springer Science & Business Media

Published: 2001-11-06

Total Pages: 372

ISBN-13: 9783540415985

DOWNLOAD EBOOK

"To my knowledge [this] is the first book to address specifically the use of high-order discretizations in the time domain to solve wave equations. [...] I recommend the book for its clear and cogent coverage of the material selected by its author." --Physics Today, March 2003


Higher-Order Numerical Methods for Transient Wave Equations

Higher-Order Numerical Methods for Transient Wave Equations

Author: Gary Cohen

Publisher: Springer Science & Business Media

Published: 2013-04-17

Total Pages: 355

ISBN-13: 366204823X

DOWNLOAD EBOOK

"To my knowledge [this] is the first book to address specifically the use of high-order discretizations in the time domain to solve wave equations. [...] I recommend the book for its clear and cogent coverage of the material selected by its author." --Physics Today, March 2003


Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012

Spectral and High Order Methods for Partial Differential Equations - ICOSAHOM 2012

Author: Mejdi Azaïez

Publisher: Springer Science & Business Media

Published: 2013-11-19

Total Pages: 421

ISBN-13: 3319016016

DOWNLOAD EBOOK

The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2012), and provides an overview of the depth and breath of the activities within this important research area. The carefully reviewed selection of the papers will provide the reader with a snapshot of state-of-the-art and help initiate new research directions through the extensive bibliography. ​


Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1

Author: Jens M. Melenk

Publisher: Springer Nature

Published: 2023-06-30

Total Pages: 571

ISBN-13: 3031204328

DOWNLOAD EBOOK

The volume features high-quality papers based on the presentations at the ICOSAHOM 2020+1 on spectral and high order methods. The carefully reviewed articles cover state of the art topics in high order discretizations of partial differential equations. The volume presents a wide range of topics including the design and analysis of high order methods, the development of fast solvers on modern computer architecture, and the application of these methods in fluid and structural mechanics computations.


Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014

Author: Robert M. Kirby

Publisher: Springer

Published: 2015-11-26

Total Pages: 504

ISBN-13: 3319198009

DOWNLOAD EBOOK

The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2014), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of papers will provide the reader with a snapshot of the state-of-the-art and help initiate new research directions through the extensive biography.


Spectral Methods

Spectral Methods

Author: Claudio Canuto

Publisher: Springer Science & Business Media

Published: 2007-09-23

Total Pages: 585

ISBN-13: 3540307265

DOWNLOAD EBOOK

Since the publication of "Spectral Methods in Fluid Dynamics" 1988, spectral methods have become firmly established as a mainstream tool for scientific and engineering computation. The authors of that book have incorporated into this new edition the many improvements in the algorithms and the theory of spectral methods that have been made since then. This latest book retains the tight integration between the theoretical and practical aspects of spectral methods, and the chapters are enhanced with material on the Galerkin with numerical integration version of spectral methods. The discussion of direct and iterative solution methods is also greatly expanded.


Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018

Author: Spencer J. Sherwin

Publisher: Springer Nature

Published: 2020-08-11

Total Pages: 658

ISBN-13: 3030396479

DOWNLOAD EBOOK

This open access book features a selection of high-quality papers from the presentations at the International Conference on Spectral and High-Order Methods 2018, offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions.


Chebyshev and Fourier Spectral Methods

Chebyshev and Fourier Spectral Methods

Author: John P. Boyd

Publisher: Courier Corporation

Published: 2001-12-03

Total Pages: 690

ISBN-13: 0486411834

DOWNLOAD EBOOK

Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.


Computer Methods in Mechanics

Computer Methods in Mechanics

Author: Mieczyslaw Kuczma

Publisher: Springer Science & Business Media

Published: 2010-03-10

Total Pages: 534

ISBN-13: 364205241X

DOWNLOAD EBOOK

Prominent scientists present the latest achievements in computational methods and mechanics in this book. These lectures were held at the CMM 2009 conference.


Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations

Finite Element and Discontinuous Galerkin Methods for Transient Wave Equations

Author: Gary Cohen

Publisher: Springer

Published: 2016-08-05

Total Pages: 393

ISBN-13: 9401777616

DOWNLOAD EBOOK

This monograph presents numerical methods for solving transient wave equations (i.e. in time domain). More precisely, it provides an overview of continuous and discontinuous finite element methods for these equations, including their implementation in physical models, an extensive description of 2D and 3D elements with different shapes, such as prisms or pyramids, an analysis of the accuracy of the methods and the study of the Maxwell’s system and the important problem of its spurious free approximations. After recalling the classical models, i.e. acoustics, linear elastodynamics and electromagnetism and their variational formulations, the authors present a wide variety of finite elements of different shapes useful for the numerical resolution of wave equations. Then, they focus on the construction of efficient continuous and discontinuous Galerkin methods and study their accuracy by plane wave techniques and a priori error estimates. A chapter is devoted to the Maxwell’s system and the important problem of its spurious-free approximations. Treatment of unbounded domains by Absorbing Boundary Conditions (ABC) and Perfectly Matched Layers (PML) is described and analyzed in a separate chapter. The two last chapters deal with time approximation including local time-stepping and with the study of some complex models, i.e. acoustics in flow, gravity waves and vibrating thin plates. Throughout, emphasis is put on the accuracy and computational efficiency of the methods, with attention brought to their practical aspects.This monograph also covers in details the theoretical foundations and numerical analysis of these methods. As a result, this monograph will be of interest to practitioners, researchers, engineers and graduate students involved in the numerical simulationof waves.