Atoms and Molecules Interacting with Light

Atoms and Molecules Interacting with Light

Author: Peter van der Straten

Publisher: Cambridge University Press

Published: 2016-02-04

Total Pages: 531

ISBN-13: 1107090148

DOWNLOAD EBOOK

Focusing on atom-light interactions and containing numerous exercises, this in-depth textbook prepares students for research in a fast-growing field.


Controlling the Quantum World

Controlling the Quantum World

Author: National Research Council

Publisher: National Academies Press

Published: 2007-06-21

Total Pages: 245

ISBN-13: 0309102707

DOWNLOAD EBOOK

As part of the Physics 2010 decadal survey project, the Department of Energy and the National Science Foundation requested that the National Research Council assess the opportunities, over roughly the next decade, in atomic, molecular, and optical (AMO) science and technology. In particular, the National Research Council was asked to cover the state of AMO science, emphasizing recent accomplishments and identifying new and compelling scientific questions. Controlling the Quantum World, discusses both the roles and challenges for AMO science in instrumentation; scientific research near absolute zero; development of extremely intense x-ray and laser sources; exploration and control of molecular processes; photonics at the nanoscale level; and development of quantum information technology. This book also offers an assessment of and recommendations about critical issues concerning maintaining U.S. leadership in AMO science and technology.


A Guided Tour of Light Beams

A Guided Tour of Light Beams

Author: David S Simon

Publisher: Morgan & Claypool Publishers

Published: 2016-12-07

Total Pages: 105

ISBN-13: 1681744376

DOWNLOAD EBOOK

From science fiction death rays to supermarket scanners, lasers have become deeply embedded in our daily lives and our culture. But in recent decades the standard laser beam has evolved into an array of more specialized light beams with a variety of strange and counterintuitive properties. Some of them have the ability to reconstruct themselves after disruption by an obstacle, while others can bend in complicated shapes or rotate like a corkscrew. These unusual optical effects open new and exciting possibilities for science and technology. For example, they make possible microscopic tractor beams that pull objects toward the source of the light, and they allow the trapping and manipulation of individual molecules to construct specially-tailored nanostructures for engineering or medical use. It has even been found that beams of light can produce lines of darkness that can be tied in knots. This book is an introductory survey of these specialized light beams and their scientific applications, at a level suitable for undergraduates with a basic knowledge of optics and quantum mechanics. It provides a unified treatment of the subject, collecting together in textbook form for the first time many topics currently found only in the original research literature.


Light-Matter Interaction

Light-Matter Interaction

Author: Wendell T. Hill, III

Publisher: John Wiley & Sons

Published: 2008-06-25

Total Pages: 325

ISBN-13: 352761902X

DOWNLOAD EBOOK

This book draws together the principal ideas that form the basis of atomic, molecular, and optical science and engineering. It covers the basics of atoms, diatomic molecules, atoms and molecules in static and electromagnetic fields and nonlinear optics. Exercises and bibliographies supplement each chapter, while several appendices present such important background information as physics and math definitions, atomic and molecular data, and tensor algebra. Accessible to advanced undergraduates, graduate students, or researchers who have been trained in one of the conventional curricula of physics, chemistry, or engineering but who need to acquire familiarity with adjacent areas in order to pursue their research goals.


Atoms, Molecules and Optical Physics 1

Atoms, Molecules and Optical Physics 1

Author: Ingolf V. Hertel

Publisher: Springer

Published: 2014-10-24

Total Pages: 710

ISBN-13: 3642543227

DOWNLOAD EBOOK

This is the first volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 1 provides the canonical knowledge in atomic physics together with basics of modern spectroscopy. Starting from the fundamentals of quantum physics, the reader is familiarized in well structured chapters step by step with the most important phenomena, models and measuring techniques. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.


Atoms, Molecules and Optical Physics 2

Atoms, Molecules and Optical Physics 2

Author: Ingolf V. Hertel

Publisher: Springer

Published: 2014-10-22

Total Pages: 752

ISBN-13: 3642543138

DOWNLOAD EBOOK

This is the second volume of textbooks on atomic, molecular and optical physics, aiming at a comprehensive presentation of this highly productive branch of modern physics as an indispensable basis for many areas in physics and chemistry as well as in state of the art bio- and material-sciences. It primarily addresses advanced students (including PhD students), but in a number of selected subject areas the reader is lead up to the frontiers of present research. Thus even the active scientist is addressed. This volume 2 introduces lasers and quantum optics, while the main focus is on the structure of molecules and their spectroscopy, as well as on collision physics as the continuum counterpart to bound molecular states. The emphasis is always on the experiment and its interpretation, while the necessary theory is introduced from this perspective in a compact and occasionally somewhat heuristic manner, easy to follow even for beginners.


Light-Matter Interaction

Light-Matter Interaction

Author: John Weiner

Publisher: Oxford University Press

Published: 2017-01-26

Total Pages: 432

ISBN-13: 0192516779

DOWNLOAD EBOOK

Light-matter interaction is pervasive throughout the disciplines of optical and atomic physics, condensed matter physics, electrical engineering, and now increasingly in biology and medicine with frequency and length scales extending over many orders of magnitude. Deep earth and sea communications use frequencies of a few tens of Hz, and X-ray imaging requires sources oscillating at hundreds of petaHz. This book provides advanced undergraduates, graduate students and researchers from diverse disciplines with the principal tools required to understand and contribute to rapidly advancing developments in light-matter interaction, centred at optical frequencies and length scales from a few hundred nanometres to a few hundredths of a nanometre. This book deploys an arsenal of powerful analytic tools to render this multidisciplinary subject in unique form, not encountered in standard Physics or Electrical Engineering text books. This new edition has been substantially expanded with almost 200 pages of new material. Several new and extended chapters treat momentum flow between fields and matter, metamaterials, and atom-optical forces applied to atomic and molecular cooling and trapping.


Atoms, Molecules and Photons

Atoms, Molecules and Photons

Author: Wolfgang Demtröder

Publisher: Springer

Published: 2019-02-09

Total Pages: 561

ISBN-13: 3662555239

DOWNLOAD EBOOK

This introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed over the last two centuries both by many experimental discoveries and, from the theoretical side, by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions are offered to encourage readers to actively engage in applying and adapting the fundamental physics presented in this textbook to specific situations. Completely revised third edition with new sections covering all actual developments, like photonics, ultrashort lasers, ultraprecise frequency combs, free electron lasers, cooling and trapping of atoms, quantum optics and quantum information.


Atoms in Electromagnetic Fields

Atoms in Electromagnetic Fields

Author: Claude Cohen-Tannoudji

Publisher: World Scientific

Published: 2004

Total Pages: 772

ISBN-13: 9789812560193

DOWNLOAD EBOOK

Papers written during the last 40 years by Claude Cohen-Tannoudji and his collaborators on various physical effects which can be observed on atoms interacting with electromagnetic fields.


Laser Control of Atoms and Molecules

Laser Control of Atoms and Molecules

Author: Vladilen Letokhov

Publisher: OUP Oxford

Published: 2007-02-15

Total Pages: 328

ISBN-13: 0191523712

DOWNLOAD EBOOK

Rather different problems can be lumped together under the general term 'laser control of atoms and molecules'. They include the laser selection of atomic and molecular velocities for the purpose of Doppler-free spectroscopy, laser control of the position and velocity of atoms (i.e. laser trapping and cooling of atoms), and laser control of atomic and molecular processes (ionization, dissociation) with a view of detecting single atoms and molecules and particularly separating isotopes and nuclear isomers. Over the last decades the principal problems posed have been successfully solved, and many of them have evolved remarkably in the subsequent investigations of the international research community. For example, the solution of the problem of laser cooling and trapping of atoms has given birth to the new field of the physics of ultracold matter, i.e. quantum atomic and molecular gases. The laser non-coherent control of uni-molecular processes has found an interesting extension in the field of laser coherent control of molecules. The concept of laser control of position has been successfully demonstrated with microparticles (optical tweezers), concurrently with investigations into atomic control. The laser photo-ionization of molecules on surfaces has led to the development of novel techniques of laser-assisted mass spectrometry of macromolecules, and so on. The aim of this book is to review these topics from a unified or 'coherent' point of view. It will be useful for many readers in various fields of laser science and its applications.