Advances in Superconductivity II

Advances in Superconductivity II

Author: Takehiko Ishiguro

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 1070

ISBN-13: 4431681175

DOWNLOAD EBOOK

Since the First International Symposium on Superconductivity (ISS '88) was held in Nagoya, Japan in 1988, significant advances have been achieved in a wide range of high temperature superconductivity research. Although the T c's of recently discovered oxide superconductors still do not exceed the record high value of 125K reported before that meeting, the enrichment in the variety of materials should prove useful to the investigation of the fundamental mechanism of superconductiv ity in these exotic materials. The discovery of the n-type superconducting oxides proved to oppose the previously held empirical fact that the charge carriers in all oxide superconductors were holes. In addition, optimization of the charge carrier density has been established as a technique to improve the superconducting proper ties of the previously known oxide materials. Many new experimental and theoreti cal advances have been made in understanding both the fundamental and the applied aspects of high temperature superconductivity. In this latter area, various new processing techniques have been investigated, and the critical current densities and other significant parameters of both bulk and thin film oxide superconductors are rapidly being improved. At this exciting stage of research in high temperature superconductivity, it is extremely important to provide an opportunity for researchers from industry, academia, government and other institutions around the world to freely exchange information and thus contribute to the further advancement of research.


Superconducting Materials

Superconducting Materials

Author: Yassine Slimani

Publisher: Springer Nature

Published: 2022-05-03

Total Pages: 406

ISBN-13: 9811912114

DOWNLOAD EBOOK

This book presents an overview of the science of superconducting materials. It covers the fundamentals and theories of superconductivity. Subjects of special interest involving mechanisms of high temperature superconductors, tunneling, transport properties, magnetic properties, critical states, vortex dynamics, etc. are present in the book. It assists as a fundamental resource on the developed methodologies and techniques involved in the synthesis, processing, and characterization of superconducting materials. The book covers numerous classes of superconducting materials including fullerenes, borides, pnictides or iron-based chalcogen superconductors ides, alloys and cuprate oxides. Their crystal structures and properties are described. Thereafter, the book focuses on the progress of the applications of superconducting materials into superconducting magnets, fusion reactors, and accelerators and other superconducting magnets. The applications also cover recent progress in superconducting wires, power generators, powerful energy storage devices, sensitive magnetometers, RF and microwave filters, fast fault current limiters, fast digital circuits, transport vehicles, and medical applications.


Superconducting Technology

Superconducting Technology

Author: Kristian Fossheim

Publisher: World Scientific

Published: 1991

Total Pages: 258

ISBN-13: 9789810206284

DOWNLOAD EBOOK

This book contains an interdisciplinary selection of timely articles which cover a wide range of superconducting technologies ranging from high tech medicine (10-12 Gauss) to multipurpose sensors, microwaves, radio engineering, magnet technology for accelerators, magnetic energy storage, and power transmission on the 109 watt scale. It is aimed primarily at the non-specialist and will be suitable as an introductory course book for those in the relevant fields and related industries. As shown in the title several examples of high-c applications are included. While low-Tc is still the leading technology, for instance, in cables and SQUIDS, case studies in these areas are presented.


Fermi Surface and Quantum Critical Phenomena of High-Temperature Superconductors

Fermi Surface and Quantum Critical Phenomena of High-Temperature Superconductors

Author: Carsten Matthias Putzke

Publisher: Springer

Published: 2016-11-16

Total Pages: 169

ISBN-13: 3319486462

DOWNLOAD EBOOK

This thesis provides a detailed introduction to quantum oscillation measurement and analysis and offers a connection between Fermi surface properties and superconductivity in high-temperature superconductors. It also discusses the field of iron-based superconductors and tests the models for the appearance of nodes in the superconducting gap of a 111-type pnictide using quantum oscillation measurements combined with band structure calculation. The same measurements were carried out to determine the quasiparticle mass in BaFe2(As1-xPx)2, which is strongly enhanced at the expected quantum critical point. While the lower superconducting critical field shows evidence of quantum criticality, the upper superconducting critical field is not influenced by the quantum critical point. These findings contradict conventional theories, demonstrating the need for a theoretical treatment of quantum critical superconductors, which has not been addressed to date. The quest to discover similar evidence in the cuprates calls for the application of extreme conditions. As such, quantum oscillation measurements were performed under high pressure in a high magnetic field, revealing a negative correlation between quasiparticle mass and superconducting critical temperature.


Applications of Superconductivity

Applications of Superconductivity

Author: H. Weinstock

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 695

ISBN-13: 9401707529

DOWNLOAD EBOOK

This book, in essence the proceedings of a NATO Advanced Study Institute with the same title, is designed to provide in-depth coverage of many, but not all, of the major current applications of superconductivity, and of many that still are being developed. It will be of value to scientists and engineers who have interests in the research and production aspects of the technology, as well as in the applications themselves. The ftrst three chapters (by Clarke, Vrba and Wikswo) are devoted to an understanding of the principles, fabrication and uses of SQUID magnetometers and gradiometers, with the greatest emphasis on biomagnetism and nondestructive evaluation (NDE). For the most part, traditional low-temperature superconductor (LTS) SQUIDs are used, but particularly for NDE, high-temperature superconductor (HTS) SQUIDs are proving useful and often more convenient. The succeeding three chapters (by Przybysz, Likharev and Chaloupka) cover broader aspects of superconducting electronics. The ftrst two of these deal primarily with digital L TS circuits, while the third discusses in great detail passive component applications using HTS materials. Currently, HTS ftlters are undergoing intense J3-site testing at cellular telephone base stations. While it is clear that HTS ftlters outperform conventional ftlters in reducing signal loss and allowing for more channels in a given bandwidth, it isn't yet certain that the cellular telephone industry sees sufficient economic beneftts to make a ftrm decision to use HTS ftlters universally in its systems. If this application is generally adapted, the market for these ftlters should be quite large.