This book describes the history and future views of high conductivity solid ionic conductors, ionic transport theories in solids, relations between structures and ionic transport in solid ionic and ionic electronic mixed conductors.
Contents:Recent Trends in Solid State Ionics (T Takahashi)Theoretical Aspects of Fast Ion Conduction in Solids (D Brinkman)Chemical Bonding and Interaction Processes in Framework Structures (P Hagenmuller)Characterization of New Ambient Temperature Lithium Polymer-Electrolyte (G C Farrington)Relaxation of Conductivity to Structure and Structural Relaxation in Ion-Conducting Glasses (C A Angell & H Senapati)Electrochemical Studies on High Tc Superconductors (L-Q Chen & X-J Huang)Light Scattering Studies on Superionic Conductor YSZ (M Ishigame et al.)and others Readership: Solid state physicists, materials scientists and condensed matter physicists.
In an age of global industrialisation and population growth, the area of energy is one that is very much in the public consciousness. Fundamental scientific research is recognised as being crucial to delivering solutions to these issues, particularly to yield novel means of providing efficient, ideally recyclable, ways of converting, transporting and delivering energy. This volume considers a selection of the state-of-the-art materials that are being designed to meet some of the energy challenges we face today. Topics are carefully chosen that show how the skill of the synthetic chemist can be applied to allow the targeted preparation of inorganic materials with properties optimised for a specific application. Four chapters explore the key areas of: Polymer Electrolytes Advanced Inorganic Materials for Solid Oxide Fuel Cells Solar Energy Materials Hydrogen Adsorption on Metal Organic Framework Materials for Storage Applications Energy Materials provides both a summary of the current status of research, and an eye to how future research may develop materials properties further. Additional volumes in the Inorganic Materials Series: Molecular Materials Functional Oxides Porous Materials Low-Dimensional Solids
"This is the second volume of the new series which continues the highly successful..." —Advances in Electrochemistry and Electrochemical Engineering The series covers advanced topics in the area of fundamental and applied electrochemistry and engineering. Authors are selected with great care and usually represent the best talent available world-wide. The positive response by scientists worldwide to the new series is reflected in the following excerpts from reviews of the first volume: "The editors must be congratulated on the first volume of this reborn series, which will be read with pleasure and profit by many." —Journal of Electroanalytical Chemistry "This new book - and indeed the new series - can be recommended to all electrochemists in research and teaching as well as to all engineers and chemists in industry who are interested in recent developments in the field of electrochemistry." —Chemie - Ingenieur - Technik "... competently and clearly written." —Berichte der Bunsen-Gesellschaft für Physikalische Chemie
The Handbook of Solid State Electrochemistry is a one-stop resource treating the two main areas of solid state electrochemistry: electrochemical properties of solids such as oxides, halides, and cation conductors; and electrochemical kinetics and mechanisms of reactions occurring on solid electrolytes, including gas-phase electrocatalysis. The fund
Solid state power sources have developed remarkably in the last three decades owing to improvements in technology and a greater understanding of the underlying basic sciences. In particular, a greater impetus has recently been placed in developing and commercializing small, lightweight, and highly energetic solid state power sources driven by demands from portable consumer electronics, medical technology, sensors, and electric vehicles. This comprehensive handbook features contributions by forerunners in the field of solid state power source technology from universities, research organizations, and industry. It is directed at the physicist, chemist, materials scientist, electrochemist, electrical engineer, science students, battery and capacitor technologists, and evaluators of present and future generations of power sources, as a reference text providing state-of-the-art reviews on solid state battery and capacitor technologies, and also insights into likely future developments in the field. The volume covers a comprehensive series of articles that deal with the fundamental aspects and experimental aspects of solid state power sources, an in-depth discussion on the state of the various technologies, and applications of these technologies. A description of the recent developments on solid state capacitor technology, and a comprehensive list of references in each and every article will help the reader with an encyclopedia of hidden information. The organization of the material has been carefully divided into thirty-one chapters to ensure that the handbook is thoroughly comprehensive and authoritative on the subject for the reader.
Ceramic fuel cells, commonly known as solid oxide fuel cells (SOFCs), have been under development for a broad range of electric power generation applications. The most attractive feature of the SOFC is its clean and efficient production of electricity from a variety of fuels. The SOFC has the potential to be manufactured and operated cost-effectively. The widening interest in this technology, thus, arises from the continuing need to develop cleaner and more efficient means of converting energy sources into useful forms.This topical book provides a comprehensive treatise on solid oxide fuel cells and succeeds successfully in filling the gap in the market for a reference book in this field. Directed towards scientists, engineers, and technical managers working with SOFCs as well as ceramic devices based on conducting materials, and in related fields, the book will also be invaluable as a textbook for science and engineering courses.
Sodium-ion batteries are likely to be the next-generation power sources. They offer higher safety than lithium-ion batteries and, most important, sodium is available in unlimited abundance. The book covers the fundamental principles and applications of sodium-ion batteries and reports experimental work on the use of electrolytes and different electrode materials, such as silicon, carbon, conducting polymers, and Mn- and Sn-based materials. Also discussed are state-of-the-art, future prospects and challenges in sodium-ion battery technology. Keywords: Sodium-Ion Batteries, Lithium-Ion Batteries, Carbon Nanofibers, Conducting Polymers, Electrode Materials, Electrolytes, Graphene, Carbon Anodes, Magnetic Nanomaterials, Mn-based Materials, Sn-based Materials, Na-O2 Batteries, NASICON Electrodes, Organic Electrodes, Polyacetylene, Polyaniline, Polyphenylene, Redox Mediators, Reversible Capacity, Singlet Oxygen, Superoxide Stability.