The Higgs Hunter's Guide

The Higgs Hunter's Guide

Author: John F. Gunion

Publisher: CRC Press

Published: 2018-03-05

Total Pages: 333

ISBN-13: 0429976070

DOWNLOAD EBOOK

The Higgs Hunter's Guide is a definitive and comprehensive guide to the physics of Higgs bosons. In particular, it discusses the extended Higgs sectors required by those recent theoretical approaches that go beyond the Standard Model, including supersymmetry and superstring-inspired models.


Discovery Of The Higgs Boson

Discovery Of The Higgs Boson

Author: Aleandro Nisati

Publisher: World Scientific

Published: 2016-08-26

Total Pages: 470

ISBN-13: 981442546X

DOWNLOAD EBOOK

The recent observation of the Higgs boson has been hailed as the scientific discovery of the century and led to the 2013 Nobel Prize in physics. This book describes the detailed science behind the decades-long search for this elusive particle at the Large Electron Positron Collider at CERN and at the Tevatron at Fermilab and its subsequent discovery and characterization at the Large Hadron Collider at CERN. Written by physicists who played leading roles in this epic search and discovery, this book is an authoritative and pedagogical exposition of the portrait of the Higgs boson that has emerged from a large number of experimental measurements. As the first of its kind, this book should be of interest to graduate students and researchers in particle physics.


The Higgs Boson Discovery at the Large Hadron Collider

The Higgs Boson Discovery at the Large Hadron Collider

Author: Roger Wolf

Publisher: Springer

Published: 2015-05-18

Total Pages: 192

ISBN-13: 3319185128

DOWNLOAD EBOOK

This book provides a comprehensive overview of the field of Higgs boson physics. It offers the first in-depth review of the complete results in connection with the discovery of the Higgs boson at CERN’s Large Hadron Collider and based on the full dataset for the years 2011 to 2012. The fundamental concepts and principles of Higgs physics are introduced and the important searches prior to the advent of the Large Hadron Collider are briefly summarized. Lastly, the discovery and first mensuration of the observed particle in the course of the CMS experiment are discussed in detail and compared to the results obtained in the ATLAS experiment.


QCD Higher-Order Effects and Search for New Physics

QCD Higher-Order Effects and Search for New Physics

Author: Jian Wang

Publisher: Springer

Published: 2015-10-28

Total Pages: 153

ISBN-13: 3662486733

DOWNLOAD EBOOK

This book mainly investigates the precision predictions on the signal of new physics at the Large Hadron Collider (LHC) in the perturbative Quantum Chromodynamics (QCD) scheme. The potential of the LHC to discover the signal of dark matter associated production with a photon is studied after including next-to-leading order QCD corrections. The factorization and resummation of t-channel top quark transverse momentum distribution in the standard model at both the Tevatron and the LHC with soft-collinear effective theory are presented. The potential of the early LHC to discover the signal of monotops is discussed. These examples illustrate the method of searching for new physics beyond what is known today with high precision.


Measurement of Higgs Boson Production Cross Sections in the Diphoton Channel

Measurement of Higgs Boson Production Cross Sections in the Diphoton Channel

Author: Ahmed Tarek Abouelfadl Mohamed

Publisher: Springer Nature

Published: 2020-11-12

Total Pages: 305

ISBN-13: 3030595161

DOWNLOAD EBOOK

This thesis presents the measurement of the Higgs boson cross section in the diphoton decay channel. The measurement relies on proton-proton collision data at a center-of-mass energy √s = 13 TeV recorded by the ATLAS experiment at the Large Hadron Collider (LHC). The collected data correspond to the full Run-2 dataset with an integrated luminosity of 139 fb-1. The measured cross sections are used to constrain anomalous Higgs boson interactions in the Effective Field Theory (EFT) framework. The results presented in this thesis represent a reduction by a factor 2 of the different photon and jet energy scale and resolution systematic uncertainties with respect to the previous ATLAS publication. The thesis details the calibration of electron and photon energies in ATLAS, in particular the measurement of the presampler energy scale and the estimation of its systematic uncertainty. This calibration was used to perform a measurement of the Higgs boson mass in the H → γγ and H → 4l channels using the 36 fb−1 dataset.


The Black Book of Quantum Chromodynamics

The Black Book of Quantum Chromodynamics

Author: John Campbell

Publisher: Oxford University Press

Published: 2018

Total Pages: 760

ISBN-13: 0199652740

DOWNLOAD EBOOK

This title provides an in-depth introduction to the particle physics of current and future experiments at particle accelerators. The text provides the reader with an overview of practically all aspects of the strong interaction necessary to understand and appreciate modern particle phenomenology at the energy frontier.


The Standard Theory of Particle Physics

The Standard Theory of Particle Physics

Author: Luciano Maiani

Publisher: World Scientific Publishing Company

Published: 2016-08-25

Total Pages: 483

ISBN-13: 9814733512

DOWNLOAD EBOOK

The book gives a quite complete and up-to-date picture of the Standard Theory with an historical perspective, with a collection of articles written by some of the protagonists of present particle physics. The theoretical developments are described together with the most up-to-date experimental tests, including the discovery of the Higgs Boson and the measurement of its mass as well as the most precise measurements of the top mass, giving the reader a complete description of our present understanding of particle physics.


Looking Inside Jets

Looking Inside Jets

Author: Simone Marzani

Publisher: Springer

Published: 2019-05-11

Total Pages: 210

ISBN-13: 3030157091

DOWNLOAD EBOOK

This concise primer reviews the latest developments in the field of jets. Jets are collinear sprays of hadrons produced in very high-energy collisions, e.g. at the LHC or at a future hadron collider. They are essential to and ubiquitous in experimental analyses, making their study crucial. At present LHC energies and beyond, massive particles around the electroweak scale are frequently produced with transverse momenta that are much larger than their mass, i.e., boosted. The decay products of such boosted massive objects tend to occupy only a relatively small and confined area of the detector and are observed as a single jet. Jets hence arise from many different sources and it is important to be able to distinguish the rare events with boosted resonances from the large backgrounds originating from Quantum Chromodynamics (QCD). This requires familiarity with the internal properties of jets, such as their different radiation patterns, a field broadly known as jet substructure. This set of notes begins by providing a phenomenological motivation, explaining why the study of jets and their substructure is of particular importance for the current and future program of the LHC, followed by a brief but insightful introduction to QCD and to hadron-collider phenomenology. The next section introduces jets as complex objects constructed from a sequential recombination algorithm. In this context some experimental aspects are also reviewed. Since jet substructure calculations are multi-scale problems that call for all-order treatments (resummations), the bases of such calculations are discussed for simple jet quantities. With these QCD and jet physics ingredients in hand, readers can then dig into jet substructure itself. Accordingly, these notes first highlight the main concepts behind substructure techniques and introduce a list of the main jet substructure tools that have been used over the past decade. Analytic calculations are then provided for several families of tools, the goal being to identify their key characteristics. In closing, the book provides an overview of LHC searches and measurements where jet substructure techniques are used, reviews the main take-home messages, and outlines future perspectives.


Foundations of Perturbative QCD

Foundations of Perturbative QCD

Author: John Collins

Publisher: Cambridge University Press

Published: 2011-04-28

Total Pages: 637

ISBN-13: 1139500627

DOWNLOAD EBOOK

Giving an accurate account of the concepts, theorems and their justification, this book is a systematic treatment of perturbative QCD. It relates the concepts to experimental data, giving strong motivations for the methods. Ideal for graduate students starting their work in high-energy physics, it will also interest experienced researchers.


The Black Book of Quantum Chromodynamics — A Primer for the LHC Era

The Black Book of Quantum Chromodynamics — A Primer for the LHC Era

Author: John Campbell

Publisher: Oxford University Press

Published: 2018-01-19

Total Pages: 761

ISBN-13: 0191014990

DOWNLOAD EBOOK

The Black Book of Quantum Chromodynamics is an in-depth introduction to the particle physics of current and future experiments at particle accelerators. The book offers the reader an overview of practically all aspects of the strong interaction necessary to understand and appreciate modern particle phenomenology at the energy frontier. It assumes a working knowledge of quantum field theory at the level of introductory textbooks used for advanced undergraduate or in standard postgraduate lectures. The book expands this knowledge with an intuitive understanding of relevant physical concepts, an introduction to modern techniques, and their application to the phenomenology of the strong interaction at the highest energies. Aimed at graduate students and researchers, it also serves as a comprehensive reference for LHC experimenters and theorists. This book offers an exhaustive presentation of the technologies developed and used by practitioners in the field of fixed-order perturbation theory and an overview of results relevant for the ongoing research programme at the LHC. It includes an in-depth description of various analytic resummation techniques, which form the basis for our understanding of the QCD radiation pattern and how strong production processes manifest themselves in data, and a concise discussion of numerical resummation through parton showers, which form the basis of event generators for the simulation of LHC physics, and their matching and merging with fixed-order matrix elements. It also gives a detailed presentation of the physics behind the parton distribution functions, which are a necessary ingredient for every calculation relevant for physics at hadron colliders such as the LHC, and an introduction to non-perturbative aspects of the strong interaction, including inclusive observables such as total and elastic cross sections, and non-trivial effects such as multiple parton interactions and hadronization. The book concludes with a useful overview contextualising data from previous experiments such as the Tevatron and the Run I of the LHC which have shaped our understanding of QCD at hadron colliders.