Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance

Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance

Author: Vasant, Pandian M.

Publisher: IGI Global

Published: 2012-09-30

Total Pages: 735

ISBN-13: 1466620870

DOWNLOAD EBOOK

Optimization techniques have developed into a significant area concerning industrial, economics, business, and financial systems. With the development of engineering and financial systems, modern optimization has played an important role in service-centered operations and as such has attracted more attention to this field. Meta-heuristic hybrid optimization is a newly development mathematical framework based optimization technique. Designed by logicians, engineers, analysts, and many more, this technique aims to study the complexity of algorithms and problems. Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance explores the emerging study of meta-heuristics optimization algorithms and methods and their role in innovated real world practical applications. This book is a collection of research on the areas of meta-heuristics optimization algorithms in engineering, business, economics, and finance and aims to be a comprehensive reference for decision makers, managers, engineers, researchers, scientists, financiers, and economists as well as industrialists.


Heuristics for Optimization and Learning

Heuristics for Optimization and Learning

Author: Farouk Yalaoui

Publisher: Springer Nature

Published: 2020-12-15

Total Pages: 444

ISBN-13: 3030589307

DOWNLOAD EBOOK

This book is a new contribution aiming to give some last research findings in the field of optimization and computing. This work is in the same field target than our two previous books published: “Recent Developments in Metaheuristics” and “Metaheuristics for Production Systems”, books in Springer Series in Operations Research/Computer Science Interfaces. The challenge with this work is to gather the main contribution in three fields, optimization technique for production decision, general development for optimization and computing method and wider spread applications. The number of researches dealing with decision maker tool and optimization method grows very quickly these last years and in a large number of fields. We may be able to read nice and worthy works from research developed in chemical, mechanical, computing, automotive and many other fields.


Modern Heuristic Optimization Techniques

Modern Heuristic Optimization Techniques

Author: Kwang Y. Lee

Publisher: John Wiley & Sons

Published: 2008-01-28

Total Pages: 616

ISBN-13: 0470225858

DOWNLOAD EBOOK

This book explores how developing solutions with heuristic tools offers two major advantages: shortened development time and more robust systems. It begins with an overview of modern heuristic techniques and goes on to cover specific applications of heuristic approaches to power system problems, such as security assessment, optimal power flow, power system scheduling and operational planning, power generation expansion planning, reactive power planning, transmission and distribution planning, network reconfiguration, power system control, and hybrid systems of heuristic methods.


Metaheuristics and Nature Inspired Computing

Metaheuristics and Nature Inspired Computing

Author: Bernabé Dorronsoro

Publisher: Springer Nature

Published: 2022-02-21

Total Pages: 230

ISBN-13: 3030942163

DOWNLOAD EBOOK

This volume constitutes selected papers presented during the 8th International Conference on Metaheuristics and Nature Inspired Computing, META 2021, held in Marrakech, Morocco, in October 201. Due to the COVID-19 pandemic the conference was partiqally held online. The 16 papers were thoroughly reviewed and selected from the 53 submissions. They are organized in the topical sections on ​combinatorial optimization; continuous optimization; optimization and machine learning; applications.


Meta-heuristic Optimization Techniques

Meta-heuristic Optimization Techniques

Author: Anuj Kumar

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2022-01-19

Total Pages: 219

ISBN-13: 3110716259

DOWNLOAD EBOOK

This book offers a thorough overview of the most popular and researched meta-heuristic optimization techniques and nature-inspired algorithms. Their wide applicability makes them a hot research topic and an effi cient tool for the solution of complex optimization problems in various fi elds of sciences, engineering, and in numerous industries.


Learning Deep Architectures for AI

Learning Deep Architectures for AI

Author: Yoshua Bengio

Publisher: Now Publishers Inc

Published: 2009

Total Pages: 145

ISBN-13: 1601982941

DOWNLOAD EBOOK

Theoretical results suggest that in order to learn the kind of complicated functions that can represent high-level abstractions (e.g. in vision, language, and other AI-level tasks), one may need deep architectures. Deep architectures are composed of multiple levels of non-linear operations, such as in neural nets with many hidden layers or in complicated propositional formulae re-using many sub-formulae. Searching the parameter space of deep architectures is a difficult task, but learning algorithms such as those for Deep Belief Networks have recently been proposed to tackle this problem with notable success, beating the state-of-the-art in certain areas. This paper discusses the motivations and principles regarding learning algorithms for deep architectures, in particular those exploiting as building blocks unsupervised learning of single-layer models such as Restricted Boltzmann Machines, used to construct deeper models such as Deep Belief Networks.


Metaheuristics

Metaheuristics

Author: Mauricio G.C. Resende

Publisher: Springer Science & Business Media

Published: 2003-11-30

Total Pages: 744

ISBN-13: 9781402076534

DOWNLOAD EBOOK

Combinatorial optimization is the process of finding the best, or optimal, so lution for problems with a discrete set of feasible solutions. Applications arise in numerous settings involving operations management and logistics, such as routing, scheduling, packing, inventory and production management, lo cation, logic, and assignment of resources. The economic impact of combi natorial optimization is profound, affecting sectors as diverse as transporta tion (airlines, trucking, rail, and shipping), forestry, manufacturing, logistics, aerospace, energy (electrical power, petroleum, and natural gas), telecommu nications, biotechnology, financial services, and agriculture. While much progress has been made in finding exact (provably optimal) so lutions to some combinatorial optimization problems, using techniques such as dynamic programming, cutting planes, and branch and cut methods, many hard combinatorial problems are still not solved exactly and require good heuristic methods. Moreover, reaching "optimal solutions" is in many cases meaningless, as in practice we are often dealing with models that are rough simplifications of reality. The aim of heuristic methods for combinatorial op timization is to quickly produce good-quality solutions, without necessarily providing any guarantee of solution quality. Metaheuristics are high level procedures that coordinate simple heuristics, such as local search, to find solu tions that are of better quality than those found by the simple heuristics alone: Modem metaheuristics include simulated annealing, genetic algorithms, tabu search, GRASP, scatter search, ant colony optimization, variable neighborhood search, and their hybrids.


Metaheuristics in Machine Learning: Theory and Applications

Metaheuristics in Machine Learning: Theory and Applications

Author: Diego Oliva

Publisher: Springer Nature

Published:

Total Pages: 765

ISBN-13: 3030705420

DOWNLOAD EBOOK

This book is a collection of the most recent approaches that combine metaheuristics and machine learning. Some of the methods considered in this book are evolutionary, swarm, machine learning, and deep learning. The chapters were classified based on the content; then, the sections are thematic. Different applications and implementations are included; in this sense, the book provides theory and practical content with novel machine learning and metaheuristic algorithms. The chapters were compiled using a scientific perspective. Accordingly, the book is primarily intended for undergraduate and postgraduate students of Science, Engineering, and Computational Mathematics and is useful in courses on Artificial Intelligence, Advanced Machine Learning, among others. Likewise, the book is useful for research from the evolutionary computation, artificial intelligence, and image processing communities.


Meta-heuristic and Evolutionary Algorithms for Engineering Optimization

Meta-heuristic and Evolutionary Algorithms for Engineering Optimization

Author: Omid Bozorg-Haddad

Publisher: John Wiley & Sons

Published: 2017-10-09

Total Pages: 306

ISBN-13: 1119386993

DOWNLOAD EBOOK

A detailed review of a wide range of meta-heuristic and evolutionary algorithms in a systematic manner and how they relate to engineering optimization problems This book introduces the main metaheuristic algorithms and their applications in optimization. It describes 20 leading meta-heuristic and evolutionary algorithms and presents discussions and assessments of their performance in solving optimization problems from several fields of engineering. The book features clear and concise principles and presents detailed descriptions of leading methods such as the pattern search (PS) algorithm, the genetic algorithm (GA), the simulated annealing (SA) algorithm, the Tabu search (TS) algorithm, the ant colony optimization (ACO), and the particle swarm optimization (PSO) technique. Chapter 1 of Meta-heuristic and Evolutionary Algorithms for Engineering Optimization provides an overview of optimization and defines it by presenting examples of optimization problems in different engineering domains. Chapter 2 presents an introduction to meta-heuristic and evolutionary algorithms and links them to engineering problems. Chapters 3 to 22 are each devoted to a separate algorithm— and they each start with a brief literature review of the development of the algorithm, and its applications to engineering problems. The principles, steps, and execution of the algorithms are described in detail, and a pseudo code of the algorithm is presented, which serves as a guideline for coding the algorithm to solve specific applications. This book: Introduces state-of-the-art metaheuristic algorithms and their applications to engineering optimization; Fills a gap in the current literature by compiling and explaining the various meta-heuristic and evolutionary algorithms in a clear and systematic manner; Provides a step-by-step presentation of each algorithm and guidelines for practical implementation and coding of algorithms; Discusses and assesses the performance of metaheuristic algorithms in multiple problems from many fields of engineering; Relates optimization algorithms to engineering problems employing a unifying approach. Meta-heuristic and Evolutionary Algorithms for Engineering Optimization is a reference intended for students, engineers, researchers, and instructors in the fields of industrial engineering, operations research, optimization/mathematics, engineering optimization, and computer science. OMID BOZORG-HADDAD, PhD, is Professor in the Department of Irrigation and Reclamation Engineering at the University of Tehran, Iran. MOHAMMAD SOLGI, M.Sc., is Teacher Assistant for M.Sc. courses at the University of Tehran, Iran. HUGO A. LOÁICIGA, PhD, is Professor in the Department of Geography at the University of California, Santa Barbara, United States of America.


Bioinspired Heuristics for Optimization

Bioinspired Heuristics for Optimization

Author: El-Ghazali Talbi

Publisher: Springer

Published: 2018-08-18

Total Pages: 314

ISBN-13: 3319951041

DOWNLOAD EBOOK

This book presents recent research on bioinspired heuristics for optimization. Learning- based and black-box optimization exhibit some properties of intrinsic parallelization, and can be used for various optimizations problems. Featuring the most relevant work presented at the 6th International Conference on Metaheuristics and Nature Inspired Computing, held at Marrakech (Morocco) from 27th to 31st October 2016, the book presents solutions, methods, algorithms, case studies, and software. It is a valuable resource for research academics and industrial practitioners.