Provides a one-volume overall picture of the largest of the classical divisions of organic chemistry, suitable for the graduate or advanced undergraduate student, as well as for research workers, both specialists in the field and those engaged in another discipline and requiring knowledge of heterocyclic chemistry. It represents Volume 9 of Comprehensive Heterocyclic Chemistry and utilizes the general chapters which appear in the 8-volume work. The highly systematic coverage given to the subject makes this the most authoritative one-volume account of modern heterocyclic chemistry available.
This classical textbook in the best sense of the word is now completely revised, updated and with more than 40% new content. The approved ordering system according to the ring size of the heterocycles has been retained, while the important chapter on 'Problems and their Solutions' has been almost completely renewed by introduction of up-to-date scientific exercises, resulting in a great tool for self-testing and exams. There was maintained a chapter on nomenclature and a helpful index of name reactions. With approximately 1,000 new literature citations, this book remains a brilliant gateway to modern heterocyclic science for master and graduate students, as well as PhDs and researchers entering the field. 'If you want quick information about the basic (or acidic!) properties of a heterocycle, some interesting facts, or an assorted few ways of making it, this book provides a welcoming, accurate, and concise introduction.' Angewandte Chemie IE 'Eicher and Hauptmann provide an up to date introduction to the field for the advanced undergraduate and graduate students. ... The book is carefully produced to a very high standard.' European Journal of Medicinal Chemistry
Heterocycles are ubiquitously present in nature and occupy a unique place in organic chemistry as they are part of the DNA and haemoglobin that make life possible. The Chemistry of Heterocycles covers an introduction to the topic, followed by a chapter on the nomenclature of all classes of isolated, fused and polycyclic heterocycles. The third chapter delineates the highly strained three membered N,O and S containing aromatic and non-aromatic heterocycles with one and more than one similar and dissimilar heteroatom. The four-membered heterocycles are abundantly present in various natural and synthetic products of pharmacological importance. This chapter describes the natural abundance, synthesis, chemical reactivity, structural features and their medicinal importance. This class of compounds are present as sub-structures in penicillin and cytotoxic Taxol. Lastly, a chapter on the natural abundance, synthesis, chemical reactivity and pharmacological importance of 5-membered heterocycles with N,O,S heteroatom is covered. The chemistry of heterocycles with mixed heteroatom such as, N-S, N-O, N-S etc. is also described. - Gives in-depth, clear information about various systems of nomenclature along with widely acceptable IUPAC system for naming various classes of heterocycles - Provides complete information about natural occurrences, synthesis, chemical reactivity, pharmacological importance of heterocycles and their application in material science - Highly relevant for graduate students and researchers, providing updated information about various isolated and fused N,O and,S containing heterocycles
Filling a gap on the market, this handbook and ready reference is unique in its discussion of the usefulness of various heterocyclic systems in the synthesis of natural products. Clearly structured for easy access to the information, each chapter is devoted to a certain class of heterocycle, providing a tabular presentation of the natural products to be covered containing the particular heterocyclic ring system along with their biological profile, occurrence and most important physical properties, backed by the appropriate references. In addition, the application of the heterocyclic system to the synthesis of natural products ic covered in detail. Of great interest to organic, natural products, medicinal and biochemists, as well as those working in the pharmaceutical and agrochemical industry.
Heterocycles in Life and Society is an introduction to the chemistry of heterocyclic compounds, focusing on their origin and occurrence in nature, biochemical significance and wide range of applications. Written in a readable and accessible style, the book takes a multidisciplinary approach to this extremely important area of organic chemistry. Topics covered include an introduction to the structure and properties of heterocycles; the key role of heterocycles in important life processes such as the transfer of hereditary information, how enzymes function, the storage and transport of bioenergy, and photosynthesis; applications of heterocycles in medicine, agriculture and industry; heterocycles in supramolecular chemistry; the origin of heterocycles on primordial Earth; and how heterocycles can help us solve 21st century challenges. For this second edition, Heterocycles in Life and Society has been completely revised and expanded, drawing on a decade of innovation in heterocyclic chemistry. The new edition includes discussions of the role of heterocycles in nanochemistry, green chemistry, combinatorial chemistry, molecular devices and sensors, and supramolecular chemistry. Impressive achievements include the creation of various molecular devices, the recording and storage of information, the preparation of new organic conductors, and new effective drugs and pesticides with heterocyclic structures. Much new light has been thrown on various life processes, while the chemistry of heterocycles has expanded to include new types of heterocyclic structures and reactions, and the use of heterocyclic molecules as ionic liquids and proton sponges. Heterocycles in Life and Society is an essential guide to this important field for students and researchers in chemistry, biochemistry, and drug discovery, and scientists at all levels wishing to expand their scientific horizon.
This book has so closely matched the requirements of its readership over the years that it has become the first choice for chemists worldwide. Heterocyclic chemistry comprises at least half of all organic chemistry research worldwide. In particular, the vast majority of organic work done in the pharmaceutical and agrochemical industries is heterocyclic chemistry. The fifth edition of Heterocyclic Chemistry maintains the principal objective of earlier editions – to teach the fundamentals of heterocyclic reactivity and synthesis in a way that is understandable to second- and third-year undergraduate chemistry students. The inclusion of more advanced and current material also makes the book a valuable reference text for postgraduate taught courses, postgraduate researchers, and chemists at all levels working with heterocyclic compounds in industry. Fully updated and expanded to reflect important 21st century advances, the fifth edition of this classic text includes the following innovations: Extensive use of colour to highlight changes in structure and bonding during reactions Entirely new chapters on organometallic heterocyclic chemistry, heterocyclic natural products, especially in biochemical processes, and heterocycles in medicine New sections focusing on heterocyclic fluorine compounds, isotopically labeled heterocycles, and solid-phase chemistry, microwave heating and flow reactors in the heterocyclic context Essential teaching material in the early chapters is followed by short chapters throughout the text which capture the essence of heterocyclic reactivity in concise resumés suitable as introductions or summaries, for example for examination preparation. Detailed, systematic discussions cover the reactivity and synthesis of all the important heterocyclic systems. Original references and references to reviews are given throughout the text, vital for postgraduate teaching and for research scientists. Problems, divided into straightforward revision exercises, and more challenging questions (with solutions available online), help the reader to understand and apply the principles of heterocyclic reactivity and synthesis.
This expanded second edition provides a concise overview of the main principles and reactions of heterocyclic chemistry for undergraduate students studying chemistry and related courses. Using a successful and student-friendly "at a glance" approach, this book helps the student grasp the essence of heterocyclic chemistry, ensuring that they can confidently use that knowledge when required. The chapters are thoroughly revised and updated with references to books and reviews; extra examples and student exercises with answers online; and color diagrams that emphasize exactly what is happening in the reaction chemistry depicted.
Applications of Heterocycles in the Design of Drugs and Agricultural Products, Volume 134 in the Advances in Heterocyclic Chemistry series represents the most definitive series in the field - one of great importance to organic chemists, polymer chemists, and many biological scientists. Chapters in this updated volume cover Hydroxy azoles as carboxylic acid bioisosteres, Cyclic sulfoxides and sulfones in drug design, Thiazoles and topological control in drug design, Applications of fused pyrrolidine [3.3.0] heterocycles in drug design, 1,4 Disubstituted and 1,4,5 trisubstituted-1,2,3-triazoles in drug discovery and development: from the flask to the clinic, and Conformationally restricted [3.2.2]- and [3.2.1]-3-azabicyclic diamines. Because biology and organic chemistry increasingly intersect, the associated nomenclature is being used more frequently in explanations. Written by established authorities in the field from around the world, this comprehensive review combines descriptive synthetic chemistry and mechanistic insight to yield an understanding of how chemistry drives the preparation and useful properties of heterocyclic compounds. - Considered the definitive serial in the field of heterocyclic chemistry - Serves as the go-to reference for organic chemists, polymer chemists and biological scientists - Provides the latest, comprehensive reviews written by established authorities in the field - Combines descriptive synthetic chemistry and mechanistic insight to enhance understanding of how chemistry drives the preparation and useful properties of heterocyclic compounds
A comprehensive overview of synthetic strategies for nonaromatic nitrogen heterocycles Nitrogen heterocycles are extremely widely distributed in nature, as well as in synthetic substances found in pharmaceuticals, agrochemicals, and materials chemistry. With new structures and medicines that include these structures emerging yearly, and a vast new journal literature to describe them, anyone who wants to be effective in R&D needs to easily access a synthesis of the latest research. This state-of-the-art survey explores recent developments in the most widely used reactions, as well as completely new ones. Highlights the major modern synthetic methods known to obtain nonaromatic nitrogen heterocycles, and their practical applications Topics include enantioselective synthesis and catalysis, photocatalysis, biocatalysis, microwave-assisted synthesis, reactions of oximes and nitrones, and ionic liquids Discusses how to synthesize rings of specific sizes Covers sustainable synthetic approaches for obtaining salts Whether you are using nonaromatic nitrogen compounds as an academic researcher, a synthetic chemist in industry, or an advanced student, this book is an essential, up-to-date resource to support your work.