Holomorphic Vector Bundles over Compact Complex Surfaces

Holomorphic Vector Bundles over Compact Complex Surfaces

Author: Vasile Brinzanescu

Publisher: Springer

Published: 2006-11-14

Total Pages: 175

ISBN-13: 3540498451

DOWNLOAD EBOOK

The purpose of this book is to present the available (sometimes only partial) solutions to the two fundamental problems: the existence problem and the classification problem for holomorphic structures in a given topological vector bundle over a compact complex surface. Special features of the nonalgebraic surfaces case, like irreducible vector bundles and stability with respect to a Gauduchon metric, are considered. The reader requires a grounding in geometry at graduate student level. The book will be of interest to graduate students and researchers in complex, algebraic and differential geometry.


Differential Geometry of Complex Vector Bundles

Differential Geometry of Complex Vector Bundles

Author: Shoshichi Kobayashi

Publisher: Princeton University Press

Published: 2014-07-14

Total Pages: 317

ISBN-13: 1400858682

DOWNLOAD EBOOK

Holomorphic vector bundles have become objects of interest not only to algebraic and differential geometers and complex analysts but also to low dimensional topologists and mathematical physicists working on gauge theory. This book, which grew out of the author's lectures and seminars in Berkeley and Japan, is written for researchers and graduate students in these various fields of mathematics. Originally published in 1987. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics

Lectures on Hermitian-Einstein Metrics for Stable Bundles and Kähler-Einstein Metrics

Author: Y.-T. Siu

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 172

ISBN-13: 3034874863

DOWNLOAD EBOOK

These notes are based on the lectures I delivered at the German Mathematical Society Seminar in Schloss Michkeln in DUsseldorf in June. 1986 on Hermitian-Einstein metrics for stable bundles and Kahler-Einstein metrics. The purpose of these notes is to present to the reader the state-of-the-art results in the simplest and the most comprehensible form using (at least from my own subjective viewpoint) the most natural approach. The presentation in these notes is reasonably self-contained and prerequisi tes are kept to a minimum. Most steps in the estimates are reduced as much as possible to the most basic procedures such as integration by parts and the maximum principle. When less basic procedures are used such as the Sobolev and Calderon-Zygmund inequalities and the interior Schauder estimates. references are given for the reader to look them up. A considerable amount of heuristic and intuitive discussions are included to explain why certain steps are used or certain notions introduced. The inclusion of such discussions makes the style of the presentation at some places more conversational than what is usually expected of rigorous mathemtical prese"ntations. For the problems of Hermi tian-Einstein metrics for stable bundles and Kahler-Einstein metrics one can use either the continuity method or the heat equation method. These two methods are so very intimately related that in many cases the relationship betwen them borders on equivalence. What counts most is the a. priori estimates. The kind of scaffolding one hangs the a.


The Kobayashi-Hitchin Correspondence

The Kobayashi-Hitchin Correspondence

Author: Martin Lbke

Publisher: World Scientific

Published: 1995

Total Pages: 268

ISBN-13: 9789810221683

DOWNLOAD EBOOK

By the Kobayashi-Hitchin correspondence, the authors of this book mean the isomorphy of the moduli spaces Mst of stable holomorphic resp. MHE of irreducible Hermitian-Einstein structures in a differentiable complex vector bundle on a compact complex manifold. They give a complete proof of this result in the most general setting, and treat several applications and some new examples.After discussing the stability concept on arbitrary compact complex manifolds in Chapter 1, the authors consider, in Chapter 2, Hermitian-Einstein structures and prove the stability of irreducible Hermitian-Einstein bundles. This implies the existence of a natural map I from MHE to Mst which is bijective by the result of (the rather technical) Chapter 3. In Chapter 4 the moduli spaces involved are studied in detail, in particular it is shown that their natural analytic structures are isomorphic via I. Also a comparison theorem for moduli spaces of instantons resp. stable bundles is proved; this is the form in which the Kobayashi-Hitchin has been used in Donaldson theory to study differentiable structures of complex surfaces. The fact that I is an isomorphism of real analytic spaces is applied in Chapter 5 to show the openness of the stability condition and the existence of a natural Hermitian metric in the moduli space, and to study, at least in some cases, the dependence of Mst on the base metric used to define stability. Another application is a rather simple proof of Bogomolov's theorem on surfaces of type VI0. In Chapter 6, some moduli spaces of stable bundles are calculated to illustrate what can happen in the general (i.e. not necessarily Kahler) case compared to the algebraic or Kahler one. Finally, appendices containing results, especially from Hermitian geometry and analysis, in the form they are used in the main part of the book are included."


Algebraic Surfaces and Holomorphic Vector Bundles

Algebraic Surfaces and Holomorphic Vector Bundles

Author: Robert Friedman

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 333

ISBN-13: 1461216885

DOWNLOAD EBOOK

A novel feature of the book is its integrated approach to algebraic surface theory and the study of vector bundle theory on both curves and surfaces. While the two subjects remain separate through the first few chapters, they become much more tightly interconnected as the book progresses. Thus vector bundles over curves are studied to understand ruled surfaces, and then reappear in the proof of Bogomolov's inequality for stable bundles, which is itself applied to study canonical embeddings of surfaces via Reider's method. Similarly, ruled and elliptic surfaces are discussed in detail, before the geometry of vector bundles over such surfaces is analysed. Many of the results on vector bundles appear for the first time in book form, backed by many examples, both of surfaces and vector bundles, and over 100 exercises forming an integral part of the text. Aimed at graduates with a thorough first-year course in algebraic geometry, as well as more advanced students and researchers in the areas of algebraic geometry, gauge theory, or 4-manifold topology, many of the results on vector bundles will also be of interest to physicists studying string theory.


Geometry and Analysis on Complex Manifolds

Geometry and Analysis on Complex Manifolds

Author: Toshiki Mabuchi

Publisher: World Scientific

Published: 1994

Total Pages: 268

ISBN-13: 9789810220679

DOWNLOAD EBOOK

This volume presents papers dedicated to Professor Shoshichi Kobayashi, commemorating the occasion of his sixtieth birthday on January 4, 1992.The principal theme of this volume is “Geometry and Analysis on Complex Manifolds”. It emphasizes the wide mathematical influence that Professor Kobayashi has on areas ranging from differential geometry to complex analysis and algebraic geometry. It covers various materials including holomorphic vector bundles on complex manifolds, Kähler metrics and Einstein–Hermitian metrics, geometric function theory in several complex variables, and symplectic or non-Kähler geometry on complex manifolds. These are areas in which Professor Kobayashi has made strong impact and is continuing to make many deep invaluable contributions.


Vector Bundles

Vector Bundles

Author: Andrej N. Tjurin

Publisher: Universitätsverlag Göttingen

Published: 2008

Total Pages: 330

ISBN-13: 3938616741

DOWNLOAD EBOOK

This is the first volume of a three volume collection of Andrey Nikolaevich Tyurin's Selected Works. It includes his most interesting articles in the field of classical algebraic geometry, written during his whole career from the 1960s. Most of these papers treat different problems of the theory of vector bundles on curves and higher dimensional algebraic varieties, a theory which is central to algebraic geometry and most of its applications.


Geometry And Analysis On Complex Manifolds: Festschrift For S Kobayashi's 60th Birthday

Geometry And Analysis On Complex Manifolds: Festschrift For S Kobayashi's 60th Birthday

Author: Toshiki Mabuchi

Publisher: World Scientific

Published: 1994-12-09

Total Pages: 261

ISBN-13: 9814501220

DOWNLOAD EBOOK

This volume presents papers dedicated to Professor Shoshichi Kobayashi, commemorating the occasion of his sixtieth birthday on January 4, 1992.The principal theme of this volume is “Geometry and Analysis on Complex Manifolds”. It emphasizes the wide mathematical influence that Professor Kobayashi has on areas ranging from differential geometry to complex analysis and algebraic geometry. It covers various materials including holomorphic vector bundles on complex manifolds, Kähler metrics and Einstein-Hermitian metrics, geometric function theory in several complex variables, and symplectic or non-Kähler geometry on complex manifolds. These are areas in which Professor Kobayashi has made strong impact and is continuing to make many deep invaluable contributions.


Differential Analysis on Complex Manifolds

Differential Analysis on Complex Manifolds

Author: Raymond O. Wells

Publisher: Springer Science & Business Media

Published: 2007-10-31

Total Pages: 315

ISBN-13: 0387738916

DOWNLOAD EBOOK

A brand new appendix by Oscar Garcia-Prada graces this third edition of a classic work. In developing the tools necessary for the study of complex manifolds, this comprehensive, well-organized treatment presents in its opening chapters a detailed survey of recent progress in four areas: geometry (manifolds with vector bundles), algebraic topology, differential geometry, and partial differential equations. Wells’s superb analysis also gives details of the Hodge-Riemann bilinear relations on Kahler manifolds, Griffiths's period mapping, quadratic transformations, and Kodaira's vanishing and embedding theorems. Oscar Garcia-Prada’s appendix gives an overview of the developments in the field during the decades since the book appeared.