The lecture courses of the CIME Summer School on Probabilistic Models for Nonlinear PDE's and their Numerical Applications (April 1995) had a three-fold emphasis: first, on the weak convergence of stochastic integrals; second, on the probabilistic interpretation and the particle approximation of equations coming from Physics (conservation laws, Boltzmann-like and Navier-Stokes equations); third, on the modelling of networks by interacting particle systems. This book, collecting the notes of these courses, will be useful to probabilists working on stochastic particle methods and on the approximation of SPDEs, in particular, to PhD students and young researchers.
Financial Mathematics is an exciting, emerging field of application. The five sets of course notes in this book provide a bird's eye view of the current "state of the art" and directions of research. For graduate students it will therefore serve as an introduction to the field while reseachers will find it a compact source of reference. The reader is expected to have a good knowledge of the basic mathematical tools corresponding to an introductory graduate level and sufficient familiarity with probabilistic methods, in particular stochastic analysis.
ICM 2010 proceedings comprises a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.
This is a thoroughly updated edition of Dynamic Asset Pricing Theory, the standard text for doctoral students and researchers on the theory of asset pricing and portfolio selection in multiperiod settings under uncertainty. The asset pricing results are based on the three increasingly restrictive assumptions: absence of arbitrage, single-agent optimality, and equilibrium. These results are unified with two key concepts, state prices and martingales. Technicalities are given relatively little emphasis, so as to draw connections between these concepts and to make plain the similarities between discrete and continuous-time models. Readers will be particularly intrigued by this latest edition's most significant new feature: a chapter on corporate securities that offers alternative approaches to the valuation of corporate debt. Also, while much of the continuous-time portion of the theory is based on Brownian motion, this third edition introduces jumps--for example, those associated with Poisson arrivals--in order to accommodate surprise events such as bond defaults. Applications include term-structure models, derivative valuation, and hedging methods. Numerical methods covered include Monte Carlo simulation and finite-difference solutions for partial differential equations. Each chapter provides extensive problem exercises and notes to the literature. A system of appendixes reviews the necessary mathematical concepts. And references have been updated throughout. With this new edition, Dynamic Asset Pricing Theory remains at the head of the field.
A comprehensive and self-contained treatment of the theory and practice of option pricing. The role of martingale methods in financial modeling is exposed. The emphasis is on using arbitrage-free models already accepted by the market as well as on building the new ones. Standard calls and puts together with numerous examples of exotic options such as barriers and quantos, for example on stocks, indices, currencies and interest rates are analysed. The importance of choosing a convenient numeraire in price calculations is explained. Mathematical and financial language is used so as to bring mathematicians closer to practical problems of finance and presenting to the industry useful maths tools.