Ions are atoms or molecules stripped of their electrons, so they can be accelerated by electric fields. They can be made to hit each other with low energy, intermediate energy, high energy, or very high energy; each energy range seeks to investigate different aspects of hadronic physics. Intermediate-energy heavy ion collisions explore the nuclei far from stability valley, the incompressibility of nuclear matter, the liquid-gas phase transition in nuclear environment, the symmetry energy far from the normal density, and other phenomena. This has been an active field of research for last four decades.This is a book for entrants in the field. It is suitable as a companion book in a graduate course. For practitioners in the field it will be useful as a reference.
"Ions are atoms or molecules stripped of their electrons, so they can be accelerated by electric fields. They can be made to hit each other with low energy, intermediate energy, high energy, or very high energy; each energy range seeks to investigate different aspects of hadronic physics. Intermediate-energy heavy ion collisions explore the nuclei far from stability valley, the incompressibility of nuclear matter, the liquid-gas phase transition in nuclear environment, the symmetry energy far from the normal density, and other phenomena. This has been an active field of research for last four decades. This is a book for entrants in the field. It is suitable as a companion book in a graduate course. For practitioners in the field it will be useful as a reference."--
Introduction to Relativistic Heavy Ion Collisions László P. Csernai University of Bergen, Norway Written for postgraduates and advanced undergraduates in physics, this clear and concise work covers a wide range of subjects from intermediate to ultra-relativistic energies, thus providing an introductory overview of heavy ion physics. The reader is introduced to essential principles in heavy ion physics through a variety of questions, with answers, of varying difficulty. This timely text is based on a series of well received lectures given by Professor L. Csernai at the University of Minnesota, and the University of Bergen, where the author is based.
"This book is based upon a part of the invited and contributing talks at the 25th International Symposium on Ion-Atom Collisions, ISIAC (biennial), held on July 23-25, 2017 in Palm Cove, Queensland, Australia. To aid the general reader, all the authors tried to present their chapters in the context of the development of the addressed particular themes and the underlying major ideas and intricacies. Some chapters contain new results that have not been previously published elsewhere. Whenever possible, the authors made their attempts to connect the basic research in atomic and molecular collision physics with some important applications in other branches of physics as well as across the physics borders. It is hoped that the material presented in this book will be interesting and useful to the beginners and specialists alike. The contents and expositions are deemed to be helpful to the beginners in assessing the potential overlap of some of the presented material with their own research themes and this might provide motivations for possible further upgrades. Likewise, specialists could take advantage of these reviews to see where the addressed themes were and where they are going, in order to acknowledge the fruits of the efforts made thus far and actively contribute to tailoring the directions of future research. Overall, this book is truly interdisciplinary. It judiciously combines experiments and theories within particle collision physics on atomic and molecular levels. It presents state-of-the-art fundamental research in this field. It addresses the possibilities for significant and versatile applications outside standard atomic and molecular collision physics ranging from astrophysics, surface as well as cluster physics/chemistry, hadron therapy in medicine and to the chemical industry. It is then, as Volume 2, fully in the spirit of the "Aims and Scope" of this book series by reference to its "Mission Statement"."-- Back cover.
The principal goal of this book is to provide state-of-the-art coverage of the non-relativistic three- and four-body theories at intermediate and high energy ion-atom and ion-molecule collisions. The focus is on the most frequently studied processes: electron capture, ionization, transfer excitation and transfer ionization. The content is suitable both for graduate students and experienced researchers. For these collisions, the literature has seen enormous renewal of activity in the development and applications of quantum-mechanical theories. This subject is of relevance in several branches of science and technology, like accelerator-based physics, the search for new sources of energy and high temperature fusion of light ions. Other important applications are in life sciences via medicine, where high-energy ion beams are used in radiotherapy for which a number of storage ring accelerators are in full operation, under construction or planned to be built worldwide. Therefore, it is necessary to review this field for its most recent advances with an emphasis on the prospects for multidisciplinary applications.This book is accompanied by Interdisciplinary Research on Particle Collisions and Quantitative Spectroscopy Volume 2 - Fast Collisions of Light Ions with Matter: Charge Exchange and Ionization.
Intermediate-Energy Nuclear Physics is devoted to discussing the interaction between hadrons with nuclei, which leads to the emission of particles during an intranuclear cascade and subsequent decay of a highly excited residual nucleus. Experimental data and the methods and results of the calculation of probabilities of various processes initiated by intermediate-energy hadrons in nuclei are set forth and discussed. The potential for obtaining information on the structure and properties of nuclei by comparing experimental data with theoretical results is analyzed. New issues, such as analytic methods for the solution of kinetic equations describing the cascade, nuclear absorption of hadrons from bound states of hadronic atoms, interaction of antinucleons with nuclei, multifragmentation of highly excited residual nuclei, and polarization phenomena, are discussed in detail. The book also demonstrates hadron-nucleus interactions that bridge the gap between low-energy and heavy ions physics. It is an interesting reference for nuclear physicists and other researchers interested in the analysis of problems associated with the evolution of the early (hot) universe, neutron stars and supernovas, after-burning of radioactive waste in nuclear energy installations, and electronuclear energy breeding.