Heat Kernels and Spectral Theory

Heat Kernels and Spectral Theory

Author: E. B. Davies

Publisher: Cambridge University Press

Published: 1989

Total Pages: 212

ISBN-13: 9780521409971

DOWNLOAD EBOOK

Heat Kernels and Spectral Theory investigates the theory of second-order elliptic operators.


Heat Kernel and Analysis on Manifolds

Heat Kernel and Analysis on Manifolds

Author: Alexander Grigoryan

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 504

ISBN-13: 0821893939

DOWNLOAD EBOOK

The heat kernel has long been an essential tool in both classical and modern mathematics but has become especially important in geometric analysis as a result of major innovations beginning in the 1970s. The methods based on heat kernels have been used in areas as diverse as analysis, geometry, and probability, as well as in physics. This book is a comprehensive introduction to heat kernel techniques in the setting of Riemannian manifolds, which inevitably involves analysis of the Laplace-Beltrami operator and the associated heat equation. The first ten chapters cover the foundations of the subject, while later chapters deal with more advanced results involving the heat kernel in a variety of settings. The exposition starts with an elementary introduction to Riemannian geometry, proceeds with a thorough study of the spectral-theoretic, Markovian, and smoothness properties of the Laplace and heat equations on Riemannian manifolds, and concludes with Gaussian estimates of heat kernels. Grigor'yan has written this book with the student in mind, in particular by including over 400 exercises. The text will serve as a bridge between basic results and current research.Titles in this series are co-published with International Press, Cambridge, MA, USA.


Spectral Theory and Differential Operators

Spectral Theory and Differential Operators

Author: E. Brian Davies

Publisher: Cambridge University Press

Published: 1995

Total Pages: 198

ISBN-13: 9780521587105

DOWNLOAD EBOOK

This book could be used either for self-study or as a course text, and aims to lead the reader to the more advanced literature on partial differential operators.


Spectral Graph Theory

Spectral Graph Theory

Author: Fan R. K. Chung

Publisher: American Mathematical Soc.

Published: 1997

Total Pages: 228

ISBN-13: 0821803158

DOWNLOAD EBOOK

This text discusses spectral graph theory.


Heat Kernels and Dirac Operators

Heat Kernels and Dirac Operators

Author: Nicole Berline

Publisher: Springer Science & Business Media

Published: 2003-12-08

Total Pages: 384

ISBN-13: 9783540200628

DOWNLOAD EBOOK

In the first edition of this book, simple proofs of the Atiyah-Singer Index Theorem for Dirac operators on compact Riemannian manifolds and its generalizations (due to the authors and J.-M. Bismut) were presented, using an explicit geometric construction of the heat kernel of a generalized Dirac operator; the new edition makes this popular book available to students and researchers in an attractive paperback.


Analysis of Heat Equations on Domains. (LMS-31)

Analysis of Heat Equations on Domains. (LMS-31)

Author: El-Maati Ouhabaz

Publisher: Princeton University Press

Published: 2009-01-10

Total Pages: 296

ISBN-13: 1400826489

DOWNLOAD EBOOK

This is the first comprehensive reference published on heat equations associated with non self-adjoint uniformly elliptic operators. The author provides introductory materials for those unfamiliar with the underlying mathematics and background needed to understand the properties of heat equations. He then treats Lp properties of solutions to a wide class of heat equations that have been developed over the last fifteen years. These primarily concern the interplay of heat equations in functional analysis, spectral theory and mathematical physics. This book addresses new developments and applications of Gaussian upper bounds to spectral theory. In particular, it shows how such bounds can be used in order to prove Lp estimates for heat, Schrödinger, and wave type equations. A significant part of the results have been proved during the last decade. The book will appeal to researchers in applied mathematics and functional analysis, and to graduate students who require an introductory text to sesquilinear form techniques, semigroups generated by second order elliptic operators in divergence form, heat kernel bounds, and their applications. It will also be of value to mathematical physicists. The author supplies readers with several references for the few standard results that are stated without proofs.


Mathematical Physics, Spectral Theory and Stochastic Analysis

Mathematical Physics, Spectral Theory and Stochastic Analysis

Author: Michael Demuth

Publisher: Springer Science & Business Media

Published: 2014-07-08

Total Pages: 344

ISBN-13: 3034805918

DOWNLOAD EBOOK

This volume presents self-contained survey articles on modern research areas written by experts in their fields. The topics are located at the interface of spectral theory, theory of partial differential operators, stochastic analysis, and mathematical physics. The articles are accessible to graduate students and researches from other fields of mathematics or physics while also being of value to experts, as they report on the state of the art in the respective fields.


Spectral Theory and Geometry

Spectral Theory and Geometry

Author: E. Brian Davies

Publisher: Cambridge University Press

Published: 1999-09-30

Total Pages: 344

ISBN-13: 0521777496

DOWNLOAD EBOOK

Authoritative lectures from world experts on spectral theory and geometry.


Operators, Geometry and Quanta

Operators, Geometry and Quanta

Author: Dmitri Fursaev

Publisher: Springer Science & Business Media

Published: 2011-06-25

Total Pages: 294

ISBN-13: 9400702051

DOWNLOAD EBOOK

This book gives a detailed and self-contained introduction into the theory of spectral functions, with an emphasis on their applications to quantum field theory. All methods are illustrated with applications to specific physical problems from the forefront of current research, such as finite-temperature field theory, D-branes, quantum solitons and noncommutativity. In the first part of the book, necessary background information on differential geometry and quantization, including less standard material, is collected. The second part of the book contains a detailed description of main spectral functions and methods of their calculation. In the third part, the theory is applied to several examples (D-branes, quantum solitons, anomalies, noncommutativity). This book addresses advanced graduate students and researchers in mathematical physics with basic knowledge of quantum field theory and differential geometry. The aim is to prepare readers to use spectral functions in their own research, in particular in relation to heat kernels and zeta functions.


The Ubiquitous Heat Kernel

The Ubiquitous Heat Kernel

Author: Jay Jorgenson

Publisher: American Mathematical Soc.

Published: 2006

Total Pages: 410

ISBN-13: 0821836986

DOWNLOAD EBOOK

The aim of this volume is to bring together research ideas from various fields of mathematics which utilize the heat kernel or heat kernel techniques in their research. The intention of this collection of papers is to broaden productive communication across mathematical sub-disciplines and to provide a vehicle which would allow experts in one field to initiate research with individuals in another field, as well as to give non-experts a resource which can facilitate expanding theirresearch and connecting with others.