Open a Window into the Autonomic Nervous SystemQuantifying the amount of autonomic nervous system activity in an individual patient can be extremely important, because it provides a gauge of disease severity in a large number of diseases. Heart rate variability (HRV) calculated from both short-term and longer-term electrocardiograms is an ideal win
Open a Window into the Autonomic Nervous System Quantifying the amount of autonomic nervous system activity in an individual patient can be extremely important, because it provides a gauge of disease severity in a large number of diseases. Heart rate variability (HRV) calculated from both short-term and longer-term electrocardiograms is an ideal window into such autonomic activity for two reasons: one, heart rate is sensitive to autonomic activity in the entire body, and two, recording electrocardiograms is inexpensive and non-invasive unlike other techniques currently available for autonomic assessment, such as microneurography and metaiodobenzylguanidine (MIBG) scanning. Heart Rate Variability (HRV) Signal Analysis: Clinical Applications provides a comprehensive review of three major aspects of HRV: mechanism, technique, and clinical applications. Learn Techniques for HRV Signal Analysis Edited by an engineer, a cardiologist, and a neurologist, and featuring contributions by widely published international researchers, this interdisciplinary book begins by reviewing the many signal processing techniques developed to extract autonomic activity information embedded in heart-rate records. The classical time and frequency domain measures, baroreceptor sensitivity, and newer non-linear measures of HRV are described with a fair amount of mathematical detail with the biomedical engineer and mathematically oriented physician in mind. The book also covers two recent HRV methods, heart-rate turbulence and phase-rectified signal averaging. Use of HRV in Clinical Care The large clinical section is a must-read for clinicians and engineers wishing to get an insight into how HRV is applied in medicine. Nineteen chapters altogether are devoted to uses of HRV in: Monitoring—for example to predict potential complications in pregnancies, fetal distress, and in neonatal critical care Acute care—for gauging the depth of anesthesia during surgery and predicting change in patient status in the intensive care unit Chronic disorders—for assessing the severity of congestive heart failure, stroke, Parkinson’s disease, and depression Bringing together the latest research, this comprehensive reference demonstrates the utility and potential of HRV signal analysis in both the clinic and physiology laboratory.
Heart rate variability (HRV) is considered a reliable reflection of the many physiological factors modulating the normal rhythm of the heart. It reflects autonomic nervous system (ANS) function, and as such, it is used in numerous fields of medicine. Written by experts in the field, this book provides a comprehensive overview of HRV. The first section is dedicated to technical themes related to monitoring and the variables recorded. The second section highlights use of HRV in hypothermia. Finally, the third section covers general aspects of HRV application.
This volume aims to introduce organizational researchers and practitioners to the role of neuroscience in building theory, research methodologies and practical applications. The volume introduces the field of organizational neuroscience and explores its influence on topics such as leadership, ethics and moral reasoning.
New edition of the classic complete reference book for cardiologists and trainee cardiologists on the theory and practice of electrocardiography, one of the key modalities used for evaluating cardiology patients and deciding on appropriate management strategies.
This book constitutes the thoroughly refereed post-conference proceedings of the Third International Joint Conference on Biomedical Engineering Systems and Technologies, BIOSTEC 2010, held in Valencia, Spain, in January 2010. The 30 revised full papers presented together with 1 invited lecture were carefully reviewed and selected from a total of 410 submissions in two rounds of reviewing and improvement. The papers cover a wide range of topics and are organized in four general topical sections on healthinf, biodevices, biosignals, and bioinformatics.
This volume presents the processing of the 15th ICMBE held from 4th to 7th December 2013, Singapore. Biomedical engineering is applied in most aspects of our healthcare ecosystem. From electronic health records to diagnostic tools to therapeutic, rehabilitative and regenerative treatments, the work of biomedical engineers is evident. Biomedical engineers work at the intersection of engineering, life sciences and healthcare. The engineers would use principles from applied science including mechanical, electrical, chemical and computer engineering together with physical sciences including physics, chemistry and mathematics to apply them to biology and medicine. Applying such concepts to the human body is very much the same concepts that go into building and programming a machine. The goal is to better understand, replace or fix a target system to ultimately improve the quality of healthcare. With this understanding, the conference proceedings offer a single platform for individuals and organizations working in the biomedical engineering related field to gather and network with each other in so doing create the catalyst for future development of biomedical engineering in Asia.
Over the last decades, assessment of heart rate variability (HRV) has increased in various fields of research. HRV describes changes in heartbeat intervals, which are caused by autonomic neural regulation, i.e. by the interplay of the sympathetic and the parasympathetic nervous systems. The most frequent application of HRV is connected to cardiological issues, most importantly to the monitoring of post-myocardial infarction patients and the prediction of sudden cardiac death. Analysis of HRV is also frequently applied in relation to diabetes, renal failure, neurological and psychiatric conditions, sleep disorders, psychological phenomena such as stress, as well as drug and addiction research including alcohol and smoking. The widespread application of HRV measurements is based on the fact that they are noninvasive, easy to perform, and in general reproducible – if carried out under standardized conditions. However, the amount of parameters to be analysed is still rising. Well-established time domain and frequency domain parameters are discussed controversially when it comes to their physiological interpretation and their psychometric properties like reliability and validity, and the sensitivity to cardiovascular properties of the variety of parameters seems to be a topic for further research. Recently introduced parameters like pNNxx and new dynamic methods such as approximate entropy and detrended fluctuation analysis offer new potentials and warrant standardization. However, HRV is significantly associated with average heart rate (HR) and one can conclude that HRV actually provides information on two quantities, i.e. on HR and its variability. It is hard to determine which of these two plays a principal role in the clinical value of HRV. The association between HRV and HR is not only a physiological phenomenon but also a mathematical one which is due to non-linear (mathematical) relationship between RR interval and HR. If one normalizes HRV to its average RR interval, one may get ‘pure’ variability free from the mathematical bias. Recently, a new modification method of the association between HRV and HR has been developed which enables us to completely remove the HRV dependence on HR (even the physiological one), or conversely enhance this dependence. Such an approach allows us to explore the HR contribution to the clinical significance of HRV, i.e. whether HR or its variability plays a main role in the HRV clinical value. This Research Topic covers recent advances in the application of HRV, methodological issues, basic underlying mechanisms as well as all aspects of the interaction between HRV and HR.
Photoplethysmography: Technology, Signal Analysis, and Applications is the first comprehensive volume on the theory, principles, and technology (sensors and electronics) of photoplethysmography (PPG). It provides a detailed description of the current state-of-the-art technologies/optical components enabling the extreme miniaturization of such sensors, as well as comprehensive coverage of PPG signal analysis techniques including machine learning and artificial intelligence. The book also outlines the huge range of PPG applications in healthcare, with a strong focus on the contribution of PPG in wearable sensors and PPG for cardiovascular assessment. - Presents the underlying principles and technology surrounding PPG - Includes applications for healthcare and wellbeing - Focuses on PPG in wearable sensors and devices - Presents advanced signal analysis techniques - Includes cutting-edge research, applications and future directions