Harmonic Vector Fields

Harmonic Vector Fields

Author: Sorin Dragomir

Publisher: Elsevier

Published: 2012

Total Pages: 529

ISBN-13: 0124158269

DOWNLOAD EBOOK

An excellent reference for anyone needing to examine properties of harmonic vector fields to help them solve research problems. The book provides the main results of harmonic vector ?elds with an emphasis on Riemannian manifolds using past and existing problems to assist you in analyzing and furnishing your own conclusion for further research. It emphasizes a combination of theoretical development with practical applications for a solid treatment of the subject useful to those new to research using differential geometric methods in extensive detail. A useful tool for any scientist conducting research in the field of harmonic analysis Provides applications and modern techniques to problem solving A clear and concise exposition of differential geometry of harmonic vector fields on Reimannian manifolds Physical Applications of Geometric Methods


Harmonic Function Theory

Harmonic Function Theory

Author: Sheldon Axler

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 266

ISBN-13: 1475781377

DOWNLOAD EBOOK

This book is about harmonic functions in Euclidean space. This new edition contains a completely rewritten chapter on spherical harmonics, a new section on extensions of Bochers Theorem, new exercises and proofs, as well as revisions throughout to improve the text. A unique software package supplements the text for readers who wish to explore harmonic function theory on a computer.


Two Reports on Harmonic Maps

Two Reports on Harmonic Maps

Author: James Eells

Publisher: World Scientific

Published: 1995

Total Pages: 38

ISBN-13: 9789810214661

DOWNLOAD EBOOK

Harmonic maps between Riemannian manifolds are solutions of systems of nonlinear partial differential equations which appear in different contexts of differential geometry. They include holomorphic maps, minimal surfaces, å-models in physics. Recently, they have become powerful tools in the study of global properties of Riemannian and K„hlerian manifolds.A standard reference for this subject is a pair of Reports, published in 1978 and 1988 by James Eells and Luc Lemaire.This book presents these two reports in a single volume with a brief supplement reporting on some recent developments in the theory. It is both an introduction to the subject and a unique source of references, providing an organized exposition of results spread throughout more than 800 papers.


Flows on 2-dimensional Manifolds

Flows on 2-dimensional Manifolds

Author: Igor Nikolaev

Publisher: Springer

Published: 2006-11-14

Total Pages: 305

ISBN-13: 354048759X

DOWNLOAD EBOOK

Time-evolution in low-dimensional topological spaces is a subject of puzzling vitality. This book is a state-of-the-art account, covering classical and new results. The volume comprises Poincaré-Bendixson, local and Morse-Smale theories, as well as a carefully written chapter on the invariants of surface flows. Of particular interest are chapters on the Anosov-Weil problem, C*-algebras and non-compact surfaces. The book invites graduate students and non-specialists to a fascinating realm of research. It is a valuable source of reference to the specialists.


50 Years with Hardy Spaces

50 Years with Hardy Spaces

Author: Anton Baranov

Publisher: Birkhäuser

Published: 2018-03-28

Total Pages: 477

ISBN-13: 3319590782

DOWNLOAD EBOOK

Written in honor of Victor Havin (1933–2015), this volume presents a collection of surveys and original papers on harmonic and complex analysis, function spaces and related topics, authored by internationally recognized experts in the fields. It also features an illustrated scientific biography of Victor Havin, one of the leading analysts of the second half of the 20th century and founder of the Saint Petersburg Analysis Seminar. A complete list of his publications, as well as his public speech "Mathematics as a source of certainty and uncertainty", presented at the Doctor Honoris Causa ceremony at Linköping University, are also included.


The Volume of Vector Fields on Riemannian Manifolds

The Volume of Vector Fields on Riemannian Manifolds

Author: Olga Gil-Medrano

Publisher: Springer Nature

Published: 2023-07-31

Total Pages: 131

ISBN-13: 3031368576

DOWNLOAD EBOOK

This book focuses on the study of the volume of vector fields on Riemannian manifolds. Providing a thorough overview of research on vector fields defining minimal submanifolds, and on the existence and characterization of volume minimizers, it includes proofs of the most significant results obtained since the subject’s introduction in 1986. Aiming to inspire further research, it also highlights a selection of intriguing open problems, and exhibits some previously unpublished results. The presentation is direct and deviates substantially from the usual approaches found in the literature, requiring a significant revision of definitions, statements, and proofs. A wide range of topics is covered, including: a discussion on the conditions for a vector field on a Riemannian manifold to determine a minimal submanifold within its tangent bundle with the Sasaki metric; numerous examples of minimal vector fields (including those of constant length on punctured spheres); a thorough analysis of Hopf vector fields on odd-dimensional spheres and their quotients; and a description of volume-minimizing vector fields of constant length on spherical space forms of dimension three. Each chapter concludes with an up-to-date survey which offers supplementary information and provides valuable insights into the material, enhancing the reader's understanding of the subject. Requiring a solid understanding of the fundamental concepts of Riemannian geometry, the book will be useful for researchers and PhD students with an interest in geometric analysis.


Global Differential Geometry

Global Differential Geometry

Author: Alfred Gray

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 490

ISBN-13: 0821827502

DOWNLOAD EBOOK

Alfred Gray's work covered a great part of differential geometry. In September 2000, a remarkable International Congress on Differential Geometry was held in his memory in Bilbao, Spain. Mathematicians from all over the world, representing 24 countries, attended the event. This volume includes major contributions by well known mathematicians (T. Banchoff, S. Donaldson, H. Ferguson, M. Gromov, N. Hitchin, A. Huckleberry, O. Kowalski, V. Miquel, E. Musso, A. Ros, S. Salamon, L. Vanhecke, P. Wellin and J.A. Wolf), the interesting discussion from the round table moderated by J.-P. Bourguignon, and a carefully selected and refereed selection of the Short Communications presented at the Congress. This book represents the state of the art in modern differential geometry, with some general expositions of some of the more active areas: special Riemannian manifolds, Lie groups and homogeneous spaces, complex structures, symplectic manifolds, geometry of geodesic spheres and tubes and related problems, geometry of surfaces, and computer graphics in differential geometry.


Two-Dimensional Calculus

Two-Dimensional Calculus

Author: Robert Osserman

Publisher: Courier Corporation

Published: 2014-01-05

Total Pages: 484

ISBN-13: 0486321002

DOWNLOAD EBOOK

Two-dimensional calculus is vital to the mastery of the broader field, and this text presents an extensive treatment. Advantages include the thorough integration of linear algebra and development of geometric intuition. 1986 edition.