Harmonic Analysis of Spherical Functions on Real Reductive Groups

Harmonic Analysis of Spherical Functions on Real Reductive Groups

Author: Ramesh Gangolli

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 379

ISBN-13: 3642729568

DOWNLOAD EBOOK

Analysis on Symmetric spaces, or more generally, on homogeneous spaces of semisimple Lie groups, is a subject that has undergone a vigorous development in recent years, and has become a central part of contemporary mathematics. This is only to be expected, since homogeneous spaces and group representations arise naturally in diverse contexts ranging from Number theory and Geometry to Particle Physics and Polymer Chemistry. Its explosive growth sometimes makes it difficult to realize that it is actually relatively young as mathematical theories go. The early ideas in the subject (as is the case with many others) go back to Elie Cart an and Hermann Weyl who studied the compact symmetric spaces in the 1930's. However its full development did not begin until the 1950's when Gel'fand and Harish Chandra dared to dream of a theory of representations that included all semisimple Lie groups. Harish-Chandra's theory of spherical functions was essentially complete in the late 1950's, and was to prove to be the forerunner of his monumental work on harmonic analysis on reductive groups that has inspired a whole generation of mathematicians. It is the harmonic analysis of spherical functions on symmetric spaces, that is at the focus of this book. The fundamental questions of harmonic analysis on symmetric spaces involve an interplay of the geometric, analytical, and algebraic aspects of these spaces. They have therefore attracted a great deal of attention, and there have been many excellent expositions of the themes that are characteristic of this subject.


Harmonic Analysis on Reductive Groups

Harmonic Analysis on Reductive Groups

Author: W. Barker

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 395

ISBN-13: 1461204550

DOWNLOAD EBOOK

A conference on Harmonic Analysis on Reductive Groups was held at Bowdoin College in Brunswick, Maine from July 31 to August 11, 1989. The stated goal of the conference was to explore recent advances in harmonic analysis on both real and p-adic groups. It was the first conference since the AMS Summer Sym posium on Harmonic Analysis on Homogeneous Spaces, held at Williamstown, Massachusetts in 1972, to cover local harmonic analysis on reductive groups in such detail and to such an extent. While the Williamstown conference was longer (three weeks) and somewhat broader (nilpotent groups, solvable groups, as well as semisimple and reductive groups), the structure and timeliness of the two meetings was remarkably similar. The program of the Bowdoin Conference consisted of two parts. First, there were six major lecture series, each consisting of several talks addressing those topics in harmonic analysis on real and p-adic groups which were the focus of intensive research during the previous decade. These lectures began at an introductory level and advanced to the current state of research. Sec ond, there was a series of single lectures in which the speakers presented an overview of their latest research.


Introduction to Harmonic Analysis on Reductive P-adic Groups. (MN-23)

Introduction to Harmonic Analysis on Reductive P-adic Groups. (MN-23)

Author: Allan G. Silberger

Publisher: Princeton University Press

Published: 2015-03-08

Total Pages: 379

ISBN-13: 1400871131

DOWNLOAD EBOOK

Based on a series of lectures given by Harish-Chandra at the Institute for Advanced Study in 1971-1973, this book provides an introduction to the theory of harmonic analysis on reductive p-adic groups. Originally published in 1979. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.


Representations of Algebraic Groups

Representations of Algebraic Groups

Author: Jens Carsten Jantzen

Publisher: American Mathematical Soc.

Published: 2003

Total Pages: 594

ISBN-13: 082184377X

DOWNLOAD EBOOK

Gives an introduction to the general theory of representations of algebraic group schemes. This title deals with representation theory of reductive algebraic groups and includes topics such as the description of simple modules, vanishing theorems, Borel-Bott-Weil theorem and Weyl's character formula, and Schubert schemes and lne bundles on them.


Harmonic Analysis on Commutative Spaces

Harmonic Analysis on Commutative Spaces

Author: Joseph Albert Wolf

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 408

ISBN-13: 0821842897

DOWNLOAD EBOOK

This study starts with the basic theory of topological groups, harmonic analysis, and unitary representations. It then concentrates on geometric structure, harmonic analysis, and unitary representation theory in commutative spaces.


Harmonic Analysis, the Trace Formula, and Shimura Varieties

Harmonic Analysis, the Trace Formula, and Shimura Varieties

Author: Clay Mathematics Institute. Summer School

Publisher: American Mathematical Soc.

Published: 2005

Total Pages: 708

ISBN-13: 9780821838440

DOWNLOAD EBOOK

Langlands program proposes fundamental relations that tie arithmetic information from number theory and algebraic geometry with analytic information from harmonic analysis and group representations. This title intends to provide an entry point into this exciting and challenging field.


A Course in Abstract Harmonic Analysis

A Course in Abstract Harmonic Analysis

Author: Gerald B. Folland

Publisher: CRC Press

Published: 2016-02-03

Total Pages: 317

ISBN-13: 1498727158

DOWNLOAD EBOOK

A Course in Abstract Harmonic Analysis is an introduction to that part of analysis on locally compact groups that can be done with minimal assumptions on the nature of the group. As a generalization of classical Fourier analysis, this abstract theory creates a foundation for a great deal of modern analysis, and it contains a number of elegant resul


Unitary Representations of Reductive Lie Groups

Unitary Representations of Reductive Lie Groups

Author: David A. Vogan

Publisher: Princeton University Press

Published: 1987-10-21

Total Pages: 324

ISBN-13: 9780691084824

DOWNLOAD EBOOK

This book is an expanded version of the Hermann Weyl Lectures given at the Institute for Advanced Study in January 1986. It outlines some of what is now known about irreducible unitary representations of real reductive groups, providing fairly complete definitions and references, and sketches (at least) of most proofs. The first half of the book is devoted to the three more or less understood constructions of such representations: parabolic induction, complementary series, and cohomological parabolic induction. This culminates in the description of all irreducible unitary representation of the general linear groups. For other groups, one expects to need a new construction, giving "unipotent representations." The latter half of the book explains the evidence for that expectation and suggests a partial definition of unipotent representations.