This book introduces the latest progress in six degrees of freedom (6-DoF) haptic rendering with the focus on a new approach for simulating force/torque feedback in performing tasks that require dexterous manipulation skills. One of the major challenges in 6-DoF haptic rendering is to resolve the conflict between high speed and high fidelity requirements, especially in simulating a tool interacting with both rigid and deformable objects in a narrow space and with fine features. The book presents a configuration-based optimization approach to tackle this challenge. Addressing a key issue in many VR-based simulation systems, the book will be of particular interest to researchers and professionals in the areas of surgical simulation, rehabilitation, virtual assembly, and inspection and maintenance.
This book constitutes the proceedings of the 5th International Conference, AsiaHaptics 2022, in Beijing, China, in November 2022.The 17 full papers included in this volume were carefully reviewed and selected from 46 submissions. The conference presents the latest developments of haptic hardware in education, culture, tourism, medicine, elderly care and disability assistance.
Experimental Robotics XV is the collection of papers presented at the International Symposium on Experimental Robotics, Roppongi, Tokyo, Japan on October 3-6, 2016. 73 scientific papers were selected and presented after peer review. The papers span a broad range of sub-fields in robotics including aerial robots, mobile robots, actuation, grasping, manipulation, planning and control and human-robot interaction, but shared cutting-edge approaches and paradigms to experimental robotics. The readers will find a breadth of new directions of experimental robotics. The International Symposium on Experimental Robotics is a series of bi-annual symposia sponsored by the International Foundation of Robotics Research, whose goal is to provide a forum dedicated to experimental robotics research. Robotics has been widening its scientific scope, deepening its methodologies and expanding its applications. However, the significance of experiments remains and will remain at the center of the discipline. The ISER gatherings are a venue where scientists can gather and talk about robotics based on this central tenet.
For a long time, human beings have dreamed of a virtual world where it is possible to interact with synthetic entities as if they were real. It has been shown that the ability to touch virtual objects increases the sense of presence in virtual environments. This book provides an authoritative overview of state-of-theart haptic rendering algorithms
The human haptic system, among all senses, provides unique and bidirectional communication between humans and their physical environment. Yet, to date, most human-computer interactive systems have focused primarily on the graphical rendering of visual information and, to a lesser extent, on the display of auditory information. Extending the frontier of visual computing, haptic interfaces, or force feedback devices, have the potential to increase the quality of human-computer interaction by accommodating the sense of touch. They provide an attractive augmentation to visual display and enhance the level of understanding of complex data sets. They have been effectively used for a number of applications including molecular docking, manipulation of nano-materials, surgical training, virtual prototyping, and digital sculpting. Compared with visual and auditory display, haptic rendering has extremely demanding computational requirements. In order to maintain a stable system while displaying smooth and realistic forces and torques, high haptic update rates in the range of 500-1000 Hz or more are typically used. Haptics present many new challenges to researchers and developers in computer graphics and interactive techniques. Some of the critical issues include the development of novel data structures to encode shape and material properties, as well as new techniques for geometry processing, data analysis, physical modeling, and haptic visualization. This synthesis examines some of the latest developments on haptic rendering, while looking forward to exciting future research in this area. It presents novel haptic rendering algorithms that take advantage of the human haptic sensory modality. Specifically it discusses different rendering techniques for various geometric representations (e.g. point-based, polygonal, multiresolution, distance fields, etc), as well as textured surfaces. It also shows how psychophysics of touch can provide the foundational design guidelines for developing perceptually driven force models and concludes with possible applications and issues to consider in future algorithmic design, validating rendering techniques, and evaluating haptic interfaces.
This Handbook, with contributions from leading experts in the field, provides a comprehensive, state-of-the-art account of virtual environments (VE). It serves as an invaluable source of reference for practitioners, researchers, and students in this rapidly evolving discipline. It also provides practitioners with a reference source to guide their development efforts and addresses technology concerns, as well as the social and business implications with which those associated with the technology are likely to grapple. While each chapter has a strong theoretical foundation, practical implications are derived and illustrated via the many tables and figures presented throughout the book. The Handbook presents a systematic and extensive coverage of the primary areas of research and development within VE technology. It brings together a comprehensive set of contributed articles that address the principles required to define system requirements and design, build, evaluate, implement, and manage the effective use of VE applications. The contributors provide critical insights and principles associated with their given area of expertise to provide extensive scope and detail on VE technology. After providing an introduction to VE technology, the Handbook organizes the body of knowledge into five main parts: *System Requirements--specifies multimodal system requirements, including physiological characteristics that affect VE system design. *Design Approaches and Implementation Strategies--addresses cognitive design strategies; identifies perceptual illusions that can be leveraged in VE design; discusses navigational issues, such as becoming lost within a virtual world; and provides insights into structured approaches to content design. *Health and Safety Issues--covers direct physiological effects, signs, symptoms, neurophysiology and physiological correlates of motion sickness, perceptual and perceptual-motor adaptation, and social concerns. *Evaluation--addresses VE usability engineering and ergonomics, human performance measurement in VEs, usage protocols; and provides means of measuring and managing visual, proprioceptive, and vestibular aftereffects, as well as measuring and engendering sense of presence. *Selected Applications of Virtual Environments--provides a compendium of VE applications. The Handbook closes with a brief review of the history of VE technology. The final chapter provides information on the VE profession, providing those interested with a number of sources to further their quest for the keys to developing the ultimate virtual world.
This book constitutes the refereed proceedings of the 15th International Conference on Virtual Reality and Augmented Reality, EuroVR 2018, held in London, UK, in October 2018. The 9 full papers and 6 short papers presented were carefully reviewed and selected from 39 submissions. The papers are organized in 5topical sections: vision-based motion tracking; 3D acquisition and 3D reconstruction; haptics and 3D audio; perception and cognition; interactive techniques and use-case studies.
This is Volume II of the four-volume set LNCS 3991-3994 constituting the refereed proceedings of the 6th International Conference on Computational Science, ICCS 2006. The 98 revised full papers and 29 revised poster papers of the main track presented together with 500 accepted workshop papers were carefully reviewed and selected for inclusion in the four volumes. The coverage spans the whole range of computational science.