Hands-On Differential Privacy: Introduction to the Theory and Practice Using Opendp

Hands-On Differential Privacy: Introduction to the Theory and Practice Using Opendp

Author: Ethan Cowan

Publisher: O'Reilly Media

Published: 2024-04-30

Total Pages: 0

ISBN-13: 9781492097747

DOWNLOAD EBOOK

Many organizations today analyze and share large, sensitive datasets about individuals. Whether these datasets cover healthcare details, financial records, or exam scores, it's become more difficult for organizations to protect an individual's information through deidentification, anonymization, and other traditional statistical disclosure limitation techniques. This practical book explains how differential privacy (DP) can help. Authors Ethan Cowan, Mayana Pereira, and Michael Shoemate explain how these techniques enable data scientists, researchers, and programmers to run statistical analyses that hide the contribution of any single individual. You'll dive into basic DP concepts and understand how to use open source tools to create differentially private statistics, explore how to assess the utility/privacy trade-offs, and learn how to integrate differential privacy into workflows. With this book, you'll learn: How DP guarantees privacy when other data anonymization methods don't What preserving individual privacy in a dataset entails How to apply DP in several real-world scenarios and datasets Potential privacy attack methods, including what it means to perform a reidentification attack How to use the OpenDP library in privacy-preserving data releases How to interpret guarantees provided by specific DP data releases


Hands-On Differential Privacy

Hands-On Differential Privacy

Author: Ethan Cowan

Publisher: "O'Reilly Media, Inc."

Published: 2024-05-16

Total Pages: 344

ISBN-13: 1492097705

DOWNLOAD EBOOK

Many organizations today analyze and share large, sensitive datasets about individuals. Whether these datasets cover healthcare details, financial records, or exam scores, it's become more difficult for organizations to protect an individual's information through deidentification, anonymization, and other traditional statistical disclosure limitation techniques. This practical book explains how differential privacy (DP) can help. Authors Ethan Cowan, Michael Shoemate, and Mayana Pereira explain how these techniques enable data scientists, researchers, and programmers to run statistical analyses that hide the contribution of any single individual. You'll dive into basic DP concepts and understand how to use open source tools to create differentially private statistics, explore how to assess the utility/privacy trade-offs, and learn how to integrate differential privacy into workflows. With this book, you'll learn: How DP guarantees privacy when other data anonymization methods don't What preserving individual privacy in a dataset entails How to apply DP in several real-world scenarios and datasets Potential privacy attack methods, including what it means to perform a reidentification attack How to use the OpenDP library in privacy-preserving data releases How to interpret guarantees provided by specific DP data releases


The Algorithmic Foundations of Differential Privacy

The Algorithmic Foundations of Differential Privacy

Author: Cynthia Dwork

Publisher:

Published: 2014

Total Pages: 286

ISBN-13: 9781601988188

DOWNLOAD EBOOK

The problem of privacy-preserving data analysis has a long history spanning multiple disciplines. As electronic data about individuals becomes increasingly detailed, and as technology enables ever more powerful collection and curation of these data, the need increases for a robust, meaningful, and mathematically rigorous definition of privacy, together with a computationally rich class of algorithms that satisfy this definition. Differential Privacy is such a definition. The Algorithmic Foundations of Differential Privacy starts out by motivating and discussing the meaning of differential privacy, and proceeds to explore the fundamental techniques for achieving differential privacy, and the application of these techniques in creative combinations, using the query-release problem as an ongoing example. A key point is that, by rethinking the computational goal, one can often obtain far better results than would be achieved by methodically replacing each step of a non-private computation with a differentially private implementation. Despite some powerful computational results, there are still fundamental limitations. Virtually all the algorithms discussed herein maintain differential privacy against adversaries of arbitrary computational power -- certain algorithms are computationally intensive, others are efficient. Computational complexity for the adversary and the algorithm are both discussed. The monograph then turns from fundamentals to applications other than query-release, discussing differentially private methods for mechanism design and machine learning. The vast majority of the literature on differentially private algorithms considers a single, static, database that is subject to many analyses. Differential privacy in other models, including distributed databases and computations on data streams, is discussed. The Algorithmic Foundations of Differential Privacy is meant as a thorough introduction to the problems and techniques of differential privacy, and is an invaluable reference for anyone with an interest in the topic.


Practical Data Privacy

Practical Data Privacy

Author: Katharine Jarmul

Publisher: "O'Reilly Media, Inc."

Published: 2023-04-19

Total Pages: 353

ISBN-13: 1098129423

DOWNLOAD EBOOK

Between major privacy regulations like the GDPR and CCPA and expensive and notorious data breaches, there has never been so much pressure to ensure data privacy. Unfortunately, integrating privacy into data systems is still complicated. This essential guide will give you a fundamental understanding of modern privacy building blocks, like differential privacy, federated learning, and encrypted computation. Based on hard-won lessons, this book provides solid advice and best practices for integrating breakthrough privacy-enhancing technologies into production systems. Practical Data Privacy answers important questions such as: What do privacy regulations like GDPR and CCPA mean for my data workflows and data science use cases? What does "anonymized data" really mean? How do I actually anonymize data? How does federated learning and analysis work? Homomorphic encryption sounds great, but is it ready for use? How do I compare and choose the best privacy-preserving technologies and methods? Are there open-source libraries that can help? How do I ensure that my data science projects are secure by default and private by design? How do I work with governance and infosec teams to implement internal policies appropriately?


Privacy-Preserving Machine Learning

Privacy-Preserving Machine Learning

Author: J. Morris Chang

Publisher: Simon and Schuster

Published: 2023-05-02

Total Pages: 334

ISBN-13: 1617298042

DOWNLOAD EBOOK

Keep sensitive user data safe and secure without sacrificing the performance and accuracy of your machine learning models. In Privacy Preserving Machine Learning, you will learn: Privacy considerations in machine learning Differential privacy techniques for machine learning Privacy-preserving synthetic data generation Privacy-enhancing technologies for data mining and database applications Compressive privacy for machine learning Privacy-Preserving Machine Learning is a comprehensive guide to avoiding data breaches in your machine learning projects. You’ll get to grips with modern privacy-enhancing techniques such as differential privacy, compressive privacy, and synthetic data generation. Based on years of DARPA-funded cybersecurity research, ML engineers of all skill levels will benefit from incorporating these privacy-preserving practices into their model development. By the time you’re done reading, you’ll be able to create machine learning systems that preserve user privacy without sacrificing data quality and model performance. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Machine learning applications need massive amounts of data. It’s up to you to keep the sensitive information in those data sets private and secure. Privacy preservation happens at every point in the ML process, from data collection and ingestion to model development and deployment. This practical book teaches you the skills you’ll need to secure your data pipelines end to end. About the Book Privacy-Preserving Machine Learning explores privacy preservation techniques through real-world use cases in facial recognition, cloud data storage, and more. You’ll learn about practical implementations you can deploy now, future privacy challenges, and how to adapt existing technologies to your needs. Your new skills build towards a complete security data platform project you’ll develop in the final chapter. What’s Inside Differential and compressive privacy techniques Privacy for frequency or mean estimation, naive Bayes classifier, and deep learning Privacy-preserving synthetic data generation Enhanced privacy for data mining and database applications About the Reader For machine learning engineers and developers. Examples in Python and Java. About the Author J. Morris Chang is a professor at the University of South Florida. His research projects have been funded by DARPA and the DoD. Di Zhuang is a security engineer at Snap Inc. Dumindu Samaraweera is an assistant research professor at the University of South Florida. The technical editor for this book, Wilko Henecka, is a senior software engineer at Ambiata where he builds privacy-preserving software. Table of Contents PART 1 - BASICS OF PRIVACY-PRESERVING MACHINE LEARNING WITH DIFFERENTIAL PRIVACY 1 Privacy considerations in machine learning 2 Differential privacy for machine learning 3 Advanced concepts of differential privacy for machine learning PART 2 - LOCAL DIFFERENTIAL PRIVACY AND SYNTHETIC DATA GENERATION 4 Local differential privacy for machine learning 5 Advanced LDP mechanisms for machine learning 6 Privacy-preserving synthetic data generation PART 3 - BUILDING PRIVACY-ASSURED MACHINE LEARNING APPLICATIONS 7 Privacy-preserving data mining techniques 8 Privacy-preserving data management and operations 9 Compressive privacy for machine learning 10 Putting it all together: Designing a privacy-enhanced platform (DataHub)


Hands-On Differential Privacy

Hands-On Differential Privacy

Author: Ethan Cowan

Publisher: "O'Reilly Media, Inc."

Published: 2024-05-16

Total Pages: 363

ISBN-13: 1492097713

DOWNLOAD EBOOK

Many organizations today analyze and share large, sensitive datasets about individuals. Whether these datasets cover healthcare details, financial records, or exam scores, it's become more difficult for organizations to protect an individual's information through deidentification, anonymization, and other traditional statistical disclosure limitation techniques. This practical book explains how differential privacy (DP) can help. Authors Ethan Cowan, Michael Shoemate, and Mayana Pereira explain how these techniques enable data scientists, researchers, and programmers to run statistical analyses that hide the contribution of any single individual. You'll dive into basic DP concepts and understand how to use open source tools to create differentially private statistics, explore how to assess the utility/privacy trade-offs, and learn how to integrate differential privacy into workflows. With this book, you'll learn: How DP guarantees privacy when other data anonymization methods don't What preserving individual privacy in a dataset entails How to apply DP in several real-world scenarios and datasets Potential privacy attack methods, including what it means to perform a reidentification attack How to use the OpenDP library in privacy-preserving data releases How to interpret guarantees provided by specific DP data releases


A Hands-On Introduction to Data Science

A Hands-On Introduction to Data Science

Author: Chirag Shah

Publisher: Cambridge University Press

Published: 2020-04-02

Total Pages: 459

ISBN-13: 1108472443

DOWNLOAD EBOOK

An introductory textbook offering a low barrier entry to data science; the hands-on approach will appeal to students from a range of disciplines.


Controlling Privacy and the Use of Data Assets - Volume 1

Controlling Privacy and the Use of Data Assets - Volume 1

Author: Ulf Mattsson

Publisher: CRC Press

Published: 2022-06-27

Total Pages: 353

ISBN-13: 1000599981

DOWNLOAD EBOOK

"Ulf Mattsson leverages his decades of experience as a CTO and security expert to show how companies can achieve data compliance without sacrificing operability." Jim Ambrosini, CISSP, CRISC, Cybersecurity Consultant and Virtual CISO "Ulf Mattsson lays out not just the rationale for accountable data governance, he provides clear strategies and tactics that every business leader should know and put into practice. As individuals, citizens and employees, we should all take heart that following his sound thinking can provide us all with a better future." Richard Purcell, CEO Corporate Privacy Group and former Microsoft Chief Privacy Officer Many security experts excel at working with traditional technologies but fall apart in utilizing newer data privacy techniques to balance compliance requirements and the business utility of data. This book will help readers grow out of a siloed mentality and into an enterprise risk management approach to regulatory compliance and technical roles, including technical data privacy and security issues. The book uses practical lessons learned in applying real-life concepts and tools to help security leaders and their teams craft and implement strategies. These projects deal with a variety of use cases and data types. A common goal is to find the right balance between compliance, privacy requirements, and the business utility of data. This book reviews how new and old privacy-preserving techniques can provide practical protection for data in transit, use, and rest. It positions techniques like pseudonymization, anonymization, tokenization, homomorphic encryption, dynamic masking, and more. Topics include Trends and Evolution Best Practices, Roadmap, and Vision Zero Trust Architecture Applications, Privacy by Design, and APIs Machine Learning and Analytics Secure Multiparty Computing Blockchain and Data Lineage Hybrid Cloud, CASB, and SASE HSM, TPM, and Trusted Execution Environments Internet of Things Quantum Computing And much more!


LLMs and Generative AI for Healthcare

LLMs and Generative AI for Healthcare

Author: Kerrie Holley

Publisher: "O'Reilly Media, Inc."

Published: 2024-08-20

Total Pages: 222

ISBN-13: 1098160894

DOWNLOAD EBOOK

Large language models (LLMs) and generative AI are rapidly changing the healthcare industry. These technologies have the potential to revolutionize healthcare by improving the efficiency, accuracy, and personalization of care. This practical book shows healthcare leaders, researchers, data scientists, and AI engineers the potential of LLMs and generative AI today and in the future, using storytelling and illustrative use cases in healthcare. Authors Kerrie Holley, former Google healthcare professionals, guide you through the transformative potential of large language models (LLMs) and generative AI in healthcare. From personalized patient care and clinical decision support to drug discovery and public health applications, this comprehensive exploration covers real-world uses and future possibilities of LLMs and generative AI in healthcare. With this book, you will: Understand the promise and challenges of LLMs in healthcare Learn the inner workings of LLMs and generative AI Explore automation of healthcare use cases for improved operations and patient care using LLMs Dive into patient experiences and clinical decision-making using generative AI Review future applications in pharmaceutical R&D, public health, and genomics Understand ethical considerations and responsible development of LLMs in healthcare "The authors illustrate generative's impact on drug development, presenting real-world examples of its ability to accelerate processes and improve outcomes across the pharmaceutical industry."--Harsh Pandey, VP, Data Analytics & Business Insights, Medidata-Dassault Kerrie Holley is a retired Google tech executive, IBM Fellow, and VP/CTO at Cisco. Holley's extensive experience includes serving as the first Technology Fellow at United Health Group (UHG), Optum, where he focused on advancing and applying AI, deep learning, and natural language processing in healthcare. Manish Mathur brings over two decades of expertise at the crossroads of healthcare and technology. A former executive at Google and Johnson & Johnson, he now serves as an independent consultant and advisor. He guides payers, providers, and life sciences companies in crafting cutting-edge healthcare solutions.


Data Privacy Management, Cryptocurrencies and Blockchain Technology

Data Privacy Management, Cryptocurrencies and Blockchain Technology

Author: Joaquin Garcia-Alfaro

Publisher: Springer Nature

Published: 2022-01-23

Total Pages: 345

ISBN-13: 3030939448

DOWNLOAD EBOOK

This book constitutes the refereed proceedings and revised selected papers from the 16th International Workshop on Data Privacy Management, DPM 2021, and the 5th International Workshop on Cryptocurrencies and Blockchain Technology, CBT 2021, which were held online on October 8, 2021, in conjunction with ESORICS 2021. The workshops were initially planned to take place in Darmstadt, Germany, and changed to an online event due to the COVID-19 pandemic. The DPM 2021 workshop received 25 submissions and accepted 7 full and 3 short papers for publication. These papers were organized in topical sections as follows: Risks and privacy preservation; policies and regulation; privacy and learning. For CBT 2021 6 full papers and 6 short papers were accepted out of 31 submissions. They were organized in topical sections as follows: Mining, consensus and market manipulation; smart contracts and anonymity.