"Updates fundamentals and applications of all modes of x-ray spectrometry, including total reflection and polarized beam x-ray fluorescence analysis, and synchrotron radiation induced x-ray emission. Promotes the accurate measurement of samples while reducing the scattered background in the x-ray spectrum."
X-Ray fluorescence analysis is an established technique for non-destructive elemental materials analysis. This book gives a user-oriented practical guidance to the application of this method. The book gives a survey of the theoretical fundamentals, analytical instrumentation, software for data processing, various excitation regimes including gracing incidents and microfocus measurements, quantitative analysis, applications in routine and micro analysis, mineralogy, biology, medicine, criminal investigations, archeology, metallurgy, abrasion, microelectronics, environmental air and water analysis. This book is the bible of X-Ray fluorescence analysis. It gives the basic knowledge on this technique, information on analytical equipment and guides the reader to the various applications. It appeals to researchers, analytically active engineers and advanced students.
This is the only handbook available on X-ray data. In a concise and informative manner, the most important data connected with the emission of characteristic X-ray lines are tabulated for all elements up to Z = 95 (Americium). The tabulated data are characterized and, in most cases, evaluated. Furthermore, all important processes and phenomena connected with the production, emission and detection of characteristic X-rays are discussed.
The Second Edition of Practical Gamma-Ray Spectrometry has been completely revised and updated, providing comprehensive coverage of the whole gamma-ray detection and spectrum analysis processes. Drawn on many years of teaching experience to produce this uniquely practical volume, issues discussed include the origin of gamma-rays and the issue of quality assurance in gamma-ray spectrometry. This new edition also covers the analysis of decommissioned nuclear plants, computer modelling systems for calibration, uncertainty measurements in QA, and many more topics.
This work covers important aspects of X-ray spectrometry, from basic principles to the selection of instrument parameters and sample preparation. This edition explicates the use of combined X-ray fluorescence and X-ray diffraction data, and features new applications in environmental studies, forensic science, archeometry and the analysis of metals and alloys, minerals and ore, ceramic materials, catalysts and trace metals.;This work is intended for spectroscopists, analytical chemists, materials scientists, experimental physicists, mineralogists, biologists, geologists and graduate-level students in these disciplines.
With contributions from over 40 experts in the field, this reference presents comprehensive, single-source coverage of the instrumentation, computerization, calibration, and methods development of NIR spectroscopy. It provides novel applications for accurate time- and cost-effective analyses of pharmaceuticals, polymers, textiles, agricultural products, dairy products, foods, and beverages. Emphasizing trends in sample preparation, the book covers historical development, calibration transfer, biomedical applications, plastics, and counterfeiting; on-line, in-line, and at-line analyses for process control, multilinear regression and principal component analysis, and more.
Provides comprehensive coverage on using X-ray fluorescence for laboratory applications This book focuses on the practical aspects of X-ray fluorescence (XRF) spectroscopy and discusses the requirements for a successful sample analysis, such as sample preparation, measurement techniques and calibration, as well as the quality of the analysis results. X-Ray Fluorescence Spectroscopy for Laboratory Applications begins with a short overview of the physical fundamentals of the generation of X-rays and their interaction with the sample material, followed by a presentation of the different methods of sample preparation in dependence on the quality of the source material and the objective of the measurement. After a short description of the different available equipment types and their respective performance, the book provides in-depth information on the choice of the optimal measurement conditions and the processing of the measurement results. It covers instrument types for XRF; acquisition and evaluation of X-Ray spectra; analytical errors; analysis of homogeneous materials, powders, and liquids; special applications of XRF; process control and automation. An important resource for the analytical chemist, providing concrete guidelines and support for everyday analyses Focuses on daily laboratory work with commercially available devices Offers a unique compilation of knowledge and best practices from equipment manufacturers and users Covers the entire work process: sample preparation, the actual measurement, data processing, assessment of uncertainty, and accuracy of the obtained results X-Ray Fluorescence Spectroscopy for Laboratory Applications appeals to analytical chemists, analytical laboratories, materials scientists, environmental chemists, chemical engineers, biotechnologists, and pharma engineers.
Intended for both the novice and professional, this text aims to approach problems with currently available tools and methods in the modern analytical chemistry domain. It covers all fields from basic theory and principles of analytical chemistry to instrumentation classification, design and purchasing. This edition includes information on X-ray methods and analysis, capillary electrophoresis, infrared and Raman technique comparisons, and more.
Written by a field insider with more than 20 years of experience in the development and application of atomic spectroscopy instrumentation, the Practical Guide to ICP-MS offers key concepts and guidelines in a reader-friendly format that is superb for those with limited knowledge of the technique. This reference discusses the fundamental principles
Discussing strategies to determine the structure and machanisms of numerous compound classics, this book covers new chemical and elctrophoretic techniques for rapid sample preconcentration and separation. It summarizes breakthroughs in the theory and instrumentation of electrospray mass spectrometry in pharmaceutical and biomedical applications, pr