Handbook of Thin Films, Five-Volume Set

Handbook of Thin Films, Five-Volume Set

Author: Hari Singh Nalwa

Publisher: Academic Press

Published: 2001-10-29

Total Pages: 661

ISBN-13: 0125129084

DOWNLOAD EBOOK

This five-volume handbook focuses on processing techniques, characterization methods, and physical properties of thin films (thin layers of insulating, conducting, or semiconductor material). The editor has composed five separate, thematic volumes on thin films of metals, semimetals, glasses, ceramics, alloys, organics, diamonds, graphites, porous materials, noncrystalline solids, supramolecules, polymers, copolymers, biopolymers, composites, blends, activated carbons, intermetallics, chalcogenides, dyes, pigments, nanostructured materials, biomaterials, inorganic/polymer composites, organoceramics, metallocenes, disordered systems, liquid crystals, quasicrystals, and layered structures. Thin films is a field of the utmost importance in today's materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices. Advanced, high-performance computers, high-definition TV, digital camcorders, sensitive broadband imaging systems, flat-panel displays, robotic systems, and medical electronics and diagnostics are but a few examples of miniaturized device technologies that depend the utilization of thin film materials. The Handbook of Thin Films Materials is a comprehensive reference focusing on processing techniques, characterization methods, and physical properties of these thin film materials.


Handbook of Thin Film Devices: Superconducting film devices

Handbook of Thin Film Devices: Superconducting film devices

Author: Maurice H. Francombe

Publisher: Academic Press

Published: 2000

Total Pages: 256

ISBN-13:

DOWNLOAD EBOOK

The highly industrialized world we live in depends for its survival and further growth on advanced electronic technologies which place a premium on rapidly improved performance versus size, weight, and cost. Small computers, high-definition TV, digital camcorders, flat-panel displays, and robotic systems are but a few examples of miniatured device technologies which are of critical importance to emerging societal, industrial, defense, and space needs. All of these technologies depend sensitively on the availability of miniature thin film components in array and/or integrated formats. This book provides that first multi-topical coverage of the semiconductor, optical, superconductor, magnetic, and ferroelectric devices and technologies responding to these needs. This book comprises five topical volumes edited by world authorities in their fields, id est semiconductor junction devices, semiconductor optics, superconducting film devices, magnetic film devices, and ferroelectric film devices. Well-known experts were invited to cover recent progress in aspects ranging from deposition and fabrication to device modeling, measurements, and new cutting-edge design approached for improved performance. This multitopic approach effectively demonstrates the broad-based and pervasive character of thin film techniques that impact and control a vast array of device functions that are critical to developments in computer technology, communications, television, defense and space systems, and industrial and consumer products. Readers are provided with both broad critical overviews and research level analysis and technical details. Key Features * A comprehensive discussion of the most promising and completely developed of thin film devices which impact the entire field of high-tech components and systems for commercial, defense and space applications * Edited and written by internationally known, authoritative experts and innovators, familiar with all aspects of research and development in their fields and with current and potential applications * Presents the reader with informed assessments of all candidate solid state film devices now being optimized for advanced application, e.g., in flat panel displays, solar energy conversion, high-speed and power components, radar technology, infrared imaging , advanced computers, laser sources, and numerous other arenas * Provides a well-balanced coverage of materials growth and optimization, thin-film device modelling , device fabrication and characterization, and future development directions;These inputs are critically important to both educators, designers, device technologists and manufacturers, and to system engineers * Furnishes useful insights on processing compatibility, materials and film device stability, interface engineering, cryogenic requirements and operation, lithography and micro-machining, and integrability for sub-systems * Provides a broad-based view of alternative and/or complimentary film device technologies in a single, well-referenced source * Ensures complete and detailed overview of solid-state device topics, comprehensive bibliographical information, and expert guidance in advanced and sophisticated areas of device technology and potental applications * Furnishes invaluable insights on competitive state-of-the-art thin film semiconductor, photonics, superconductor, magnetic and ferroelectric technologies, processing and compatibility,device options, performance potential and prospects for essentially all solid-state film components * An essential information source and primer for educators , researchers, engineers and technology leaders supplying a wealth of background theoretical and experimental details, as well as guidance for further advanced research and development , thesis topics and high-tech product design * Identifies key processing, fabrication, design, integration, compatibility problems and solutions involved in successful development of high-performance and stable device and sub-system architectures.


Handbook of Thin Films

Handbook of Thin Films

Author: Hari Singh Nalwa

Publisher: Elsevier

Published: 2001-11-17

Total Pages: 3436

ISBN-13: 0080533248

DOWNLOAD EBOOK

This five-volume handbook focuses on processing techniques, characterization methods, and physical properties of thin films (thin layers of insulating, conducting, or semiconductor material). The editor has composed five separate, thematic volumes on thin films of metals, semimetals, glasses, ceramics, alloys, organics, diamonds, graphites, porous materials, noncrystalline solids, supramolecules, polymers, copolymers, biopolymers, composites, blends, activated carbons, intermetallics, chalcogenides, dyes, pigments, nanostructured materials, biomaterials, inorganic/polymer composites, organoceramics, metallocenes, disordered systems, liquid crystals, quasicrystals, and layered structures.Thin films is a field of the utmost importance in today's materials science, electrical engineering and applied solid state physics; with both research and industrial applications in microelectronics, computer manufacturing, and physical devices.Advanced, high-performance computers, high-definition TV, digital camcorders, sensitive broadband imaging systems, flat-panel displays, robotic systems, and medical electronics and diagnostics are but a few examples of miniaturized device technologies that depend the utilization of thin film materials. The Handbook of Thin Films Materials is a comprehensive reference focusing on processing techniques, characterization methods, and physical properties of these thin film materials.


Thin Film Physics And Devices: Fundamental Mechanism, Materials And Applications For Thin Films

Thin Film Physics And Devices: Fundamental Mechanism, Materials And Applications For Thin Films

Author: Jianguo Zhu

Publisher: World Scientific

Published: 2021-06-18

Total Pages: 706

ISBN-13: 9811224005

DOWNLOAD EBOOK

Thin films have an extremely broad range of applications from electronics and optics to new materials and devices. Collaborative and multidisciplinary efforts from physicists, materials scientists, engineers and others have established and advanced a field with key pillars constituting (i) the synthesis and processing of thin films, (ii) the understanding of physical properties in relation to the nanometer scale, (iii) the design and fabrication of nano-devices or devices with thin film materials as building blocks, and (iv) the design and construction of novel tools for characterization of thin films.Against the backdrop of the increasingly interdisciplinary field, this book sets off to inform the basics of thin film physics and thin film devices. Readers are systematically introduced to the synthesis, processing and application of thin films; they will also study the formation of thin films, their structure and defects, and their various properties — mechanical, electrical, semiconducting, magnetic, and superconducting. With a primary focus on inorganic thin film materials, the book also ventures on organic materials such as self-assembled monolayers and Langmuir-Blodgett films.This book will be effective as a teaching or reference material in the various disciplines, ranging from Materials Science and Engineering, Electronic Science and Engineering, Electronic Materials and Components, Semiconductor Physics and Devices, to Applied Physics and more. The original Chinese publication has been instrumental in this purpose across many Chinese universities and colleges.


Handbook of Thin Film Devices: Ferroelectric film devices

Handbook of Thin Film Devices: Ferroelectric film devices

Author: Maurice H. Francombe

Publisher: Academic Press

Published: 2000

Total Pages: 268

ISBN-13:

DOWNLOAD EBOOK

The highly industrialized world we live in depends for its survival and further growth on advanced electronic technologies which place a premium on rapidly improved performance versus size, weight, and cost. Small computers, high-definition TV, digital camcorders, flat-panel displays, and robotic systems are but a few examples of miniatured device technologies which are of critical importance to emerging societal, industrial, defense, and space needs. All of these technologies depend sensitively on the availability of miniature thin film components in array and/or integrated formats. This book provides that first multi-topical coverage of the semiconductor, optical, superconductor, magnetic, and ferroelectric devices and technologies responding to these needs. This book comprises five topical volumes edited by world authorities in their fields, id est semiconductor junction devices, semiconductor optics, superconducting film devices, magnetic film devices, and ferroelectric film devices. Well-known experts were invited to cover recent progress in aspects ranging from deposition and fabrication to device modeling, measurements, and new cutting-edge design approached for improved performance. This multitopic approach effectively demonstrates the broad-based and pervasive character of thin film techniques that impact and control a vast array of device functions that are critical to developments in computer technology, communications, television, defense and space systems, and industrial and consumer products. Readers are provided with both broad critical overviews and research level analysis and technical details. Key Features * A comprehensive discussion of the most promising and completely developed of thin film devices which impact the entire field of high-tech components and systems for commercial, defense and space applications * Edited and written by internationally known, authoritative experts and innovators, familiar with all aspects of research and development in their fields and with current and potential applications * Presents the reader with informed assessments of all candidate solid state film devices now being optimized for advanced application, e.g., in flat panel displays, solar energy conversion, high-speed and power components, radar technology, infrared imaging , advanced computers, laser sources, and numerous other arenas * Provides a well-balanced coverage of materials growth and optimization, thin-film device modelling , device fabrication and characterization, and future development directions;These inputs are critically important to both educators, designers, device technologists and manufacturers, and to system engineers * Furnishes useful insights on processing compatibility, materials and film device stability, interface engineering, cryogenic requirements and operation, lithography and micro-machining, and integrability for sub-systems * Provides a broad-based view of alternative and/or complimentary film device technologies in a single, well-referenced source * Ensures complete and detailed overview of solid-state device topics, comprehensive bibliographical information, and expert guidance in advanced and sophisticated areas of device technology and potental applications * Furnishes invaluable insights on competitive state-of-the-art thin film semiconductor, photonics, superconductor, magnetic and ferroelectric technologies, processing and compatibility,device options, performance potential and prospects for essentially all solid-state film components * An essential information source and primer for educators , researchers, engineers and technology leaders supplying a wealth of background theoretical and experimental details, as well as guidance for further advanced research and development , thesis topics and high-tech product design * Identifies key processing, fabrication, design, integration, compatibility problems and solutions involved in successful development of high-performance and stable device and sub-system architectures.


Iron-Based Superconducting Thin Films

Iron-Based Superconducting Thin Films

Author: Silvia Haindl

Publisher: Springer Nature

Published: 2021-06-27

Total Pages: 403

ISBN-13: 3030751325

DOWNLOAD EBOOK

This book provides a modern introduction to the growth, characterization, and physics of iron-based superconducting thin films. Iron pnictide and iron chalcogenide compounds have become intensively studied key materials in condensed matter physics due to their potential for high temperature superconductivity. With maximum critical temperatures of around 60 K, the new superconductors rank first after the celebrated cuprates, and the latest announcements on ultrathin films promise even more. Thin film synthesis of these superconductors began in 2008 immediately after their discovery, and this growing research area has seen remarkable progress up to the present day, especially with regard to the iron chalcogenides FeSe and FeSe1-xTex, the iron pnictide BaFe2-xCoxAs2 and iron-oxyarsenides. This essential volume provides comprehensive, state-of-the-art coverage of iron-based superconducting thin films in topical chapters with detailed information on thin film synthesis and growth, analytical film characterization, interfaces, and various aspects on physics and materials properties. Current efforts towards technological applications and functional films are outlined and discussed. The development and latest results for monolayer FeSe films are also presented. This book serves as a key reference for students, lecturers, industry engineers, and academic researchers who would like to gain an overview of this complex and growing research area.


The Materials Science of Thin Films

The Materials Science of Thin Films

Author: Milton Ohring

Publisher: Academic Press

Published: 1992

Total Pages: 744

ISBN-13: 9780125249904

DOWNLOAD EBOOK

Prepared as a textbook complete with problems after each chapter, specifically intended for classroom use in universities.


Handbook of Thin Film Devices: Hetero-structures for high performance devices

Handbook of Thin Film Devices: Hetero-structures for high performance devices

Author: Maurice H. Francombe

Publisher: Academic Press

Published: 2000

Total Pages: 378

ISBN-13:

DOWNLOAD EBOOK

The highly industrialized world we live in depends for its survival and further growth on advanced electronic technologies which place a premium on rapidly improved performance versus size, weight, and cost. Small computers, high-definition TV, digital camcorders, flat-panel displays, and robotic systems are but a few examples of miniatured device technologies which are of critical importance to emerging societal, industrial, defense, and space needs. All of these technologies depend sensitively on the availability of miniature thin film components in array and/or integrated formats. This book provides that first multi-topical coverage of the semiconductor, optical, superconductor, magnetic, and ferroelectric devices and technologies responding to these needs. This book comprises five topical volumes edited by world authorities in their fields, id est semiconductor junction devices, semiconductor optics, superconducting film devices, magnetic film devices, and ferroelectric film devices. Well-known experts were invited to cover recent progress in aspects ranging from deposition and fabrication to device modeling, measurements, and new cutting-edge design approached for improved performance. This multitopic approach effectively demonstrates the broad-based and pervasive character of thin film techniques that impact and control a vast array of device functions that are critical to developments in computer technology, communications, television, defense and space systems, and industrial and consumer products. Readers are provided with both broad critical overviews and research level analysis and technical details. Key Features * A comprehensive discussion of the most promising and completely developed of thin film devices which impact the entire field of high-tech components and systems for commercial, defense and space applications * Edited and written by internationally known, authoritative experts and innovators, familiar with all aspects of research and development in their fields and with current and potential applications * Presents the reader with informed assessments of all candidate solid state film devices now being optimized for advanced application, e.g., in flat panel displays, solar energy conversion, high-speed and power components, radar technology, infrared imaging , advanced computers, laser sources, and numerous other arenas * Provides a well-balanced coverage of materials growth and optimization, thin-film device modelling , device fabrication and characterization, and future development directions;These inputs are critically important to both educators, designers, device technologists and manufacturers, and to system engineers * Furnishes useful insights on processing compatibility, materials and film device stability, interface engineering, cryogenic requirements and operation, lithography and micro-machining, and integrability for sub-systems * Provides a broad-based view of alternative and/or complimentary film device technologies in a single, well-referenced source * Ensures complete and detailed overview of solid-state device topics, comprehensive bibliographical information, and expert guidance in advanced and sophisticated areas of device technology and potental applications * Furnishes invaluable insights on competitive state-of-the-art thin film semiconductor, photonics, superconductor, magnetic and ferroelectric technologies, processing and compatibility,device options, performance potential and prospects for essentially all solid-state film components * An essential information source and primer for educators , researchers, engineers and technology leaders supplying a wealth of background theoretical and experimental details, as well as guidance for further advanced research and development , thesis topics and high-tech product design * Identifies key processing, fabrication, design, integration, compatibility problems and solutions involved in successful development of high-performance and stable device and sub-system architectures.


Handbook of Superconducting Materials

Handbook of Superconducting Materials

Author: David A. Cardwell

Publisher: CRC Press

Published: 2003

Total Pages: 1120

ISBN-13: 9780750304320

DOWNLOAD EBOOK

With the advent of High Temperature Superconductivity and the increasing reliability of fabrication techniques, superconductor technology has moved firmly into the mainstream of academic and industrial research. There is currently no single source of practical information giving guidance on which technique to use for any particular category of superconductor. An increasing number of materials scientists and electrical engineers require easy access to practical information, sensible advice and guidance on 'best-practice' and reliable, proven fabrication and characterisation techniques.The Handbook will be the definitive collection of material describing techniques for the fabrication and analysis of superconducting materials. In addition to the descriptions of techniques, authoritative discussions written by leading researchers will give guidance on the most appropriate technique for a particular situation.Characterisation and measurement techniques will form an important part of the Handbook, providing researchers with a standard reference for experimental techniques. The tutorial style description of these techniques makes the Handbook particularly suitable for use by graduate students.The Handbook will be supported by a comprehensive web site which will be updated with new data as it emerges.The Handbook has six main sections: -- Fundamentals of Superconductivity - characteristic properties, elementary theory, critical current of type II superconductors-- Processing - bulk materials, wires and tapes, thick and think films, contact techniques-- Characterisation Techniques - structure/microstructure, measurement and interpretation of electromagnetic properties,measurement of physics properties-- Materials - characteristic properties of low and high Tc materials-- Applications - high current applications, trapped flux devices, high frequency devices, josephson junction devic