Fundamentals of Structural Stability

Fundamentals of Structural Stability

Author: George Simitses

Publisher: Butterworth-Heinemann

Published: 2006-01-03

Total Pages: 403

ISBN-13: 0750678755

DOWNLOAD EBOOK

An understanable introduction to the theory of structural stability, useful for a wide variety of engineering disciplines, including mechanical, civil and aerospace.


Guide to Stability Design Criteria for Metal Structures

Guide to Stability Design Criteria for Metal Structures

Author: Ronald D. Ziemian

Publisher: John Wiley & Sons

Published: 2010-02-08

Total Pages: 1120

ISBN-13: 0470085258

DOWNLOAD EBOOK

The definitive guide to stability design criteria, fully updated and incorporating current research Representing nearly fifty years of cooperation between Wiley and the Structural Stability Research Council, the Guide to Stability Design Criteria for Metal Structures is often described as an invaluable reference for practicing structural engineers and researchers. For generations of engineers and architects, the Guide has served as the definitive work on designing steel and aluminum structures for stability. Under the editorship of Ronald Ziemian and written by SSRC task group members who are leading experts in structural stability theory and research, this Sixth Edition brings this foundational work in line with current practice and research. The Sixth Edition incorporates a decade of progress in the field since the previous edition, with new features including: Updated chapters on beams, beam-columns, bracing, plates, box girders, and curved girders. Significantly revised chapters on columns, plates, composite columns and structural systems, frame stability, and arches Fully rewritten chapters on thin-walled (cold-formed) metal structural members, stability under seismic loading, and stability analysis by finite element methods State-of-the-art coverage of many topics such as shear walls, concrete filled tubes, direct strength member design method, behavior of arches, direct analysis method, structural integrity and disproportionate collapse resistance, and inelastic seismic performance and design recommendations for various moment-resistant and braced steel frames Complete with over 350 illustrations, plus references and technical memoranda, the Guide to Stability Design Criteria for Metal Structures, Sixth Edition offers detailed guidance and background on design specifications, codes, and standards worldwide.


Handbook of Mechanical Stability in Engineering

Handbook of Mechanical Stability in Engineering

Author: Vladimir Isaevich Slivker

Publisher: World Scientific

Published: 2013

Total Pages: 1653

ISBN-13: 9814383767

DOWNLOAD EBOOK

Handbook of Mechanical Stability in Engineering (In 3 Volumes) is a systematic presentation of mathematical statements and methods of solution for problems of structural stability. It also presents a connection between the solutions of the problems and the actual design practice.This comprehensive multi-volume set with applications in Applied Mechanics, Structural, Civil and Mechanical Engineering and Applied Mathematics is useful for research engineers and developers of CAD/CAE software who investigate the stability of equilibrium of mechanical systems; practical engineers who use the software tools in their daily work and are interested in knowing more about the theoretical foundations of the strength analysis; and for advanced students and faculty of university departments where strength-related subjects of civil and mechanical engineering are taught.


Handbook of Structural Engineering

Handbook of Structural Engineering

Author: W.F. Chen

Publisher: CRC Press

Published: 2005-02-28

Total Pages: 1765

ISBN-13: 1420039938

DOWNLOAD EBOOK

Continuing the best-selling tradition of the Handbook of Structural Engineering, this second edition is a comprehensive reference to the broad spectrum of structural engineering, encapsulating the theoretical, practical, and computational aspects of the field. The contributors cover traditional and innovative approaches to analysis, design, and rehabilitation. New topics include: fundamental theories of structural dynamics; advanced analysis; wind- and earthquake-resistant design; design of prestressed structures; high-performance steel, concrete, and fiber-reinforced polymers; semirigid frame structures; structural bracing; and structural design for fire safety.


Stability of Structures

Stability of Structures

Author: Z. P. Ba?ant

Publisher: World Scientific

Published: 2010

Total Pages: 1039

ISBN-13: 9814317020

DOWNLOAD EBOOK

A crucial element of structural and continuum mechanics, stability theory has limitless applications in civil, mechanical, aerospace, naval and nuclear engineering. This text of unparalleled scope presents a comprehensive exposition of the principles and applications of stability analysis. It has been proven as a text for introductory courses and various advanced courses for graduate students. It is also prized as an exhaustive reference for engineers and researchers. The authors' focus on understanding of the basic principles rather than excessive detailed solutions, and their treatment of each subject proceed from simple examples to general concepts and rigorous formulations. All the results are derived using as simple mathematics as possible. Numerous examples are given and 700 exercise problems help in attaining a firm grasp of this central aspect of solid mechanics. The book is an unabridged republication of the 1991 edition by Oxford University Press and the 2003 edition by Dover, updated with 18 pages of end notes.


Stability of Structures

Stability of Structures

Author: Chai H Yoo

Publisher: Elsevier

Published: 2011-05-12

Total Pages: 537

ISBN-13: 0123851238

DOWNLOAD EBOOK

The current trend of building more streamlined structures has made stability analysis a subject of extreme importance. It is mostly a safety issue because Stability loss could result in an unimaginable catastrophe. Written by two authors with a combined 80 years of professional and academic experience, the objective of Stability of Structures: Principles and Applications is to provide engineers and architects with a firm grasp of the fundamentals and principles that are essential to performing effective stability analysts. Concise and readable, this guide presents stability analysis within the context of elementary nonlinear flexural analysis, providing a strong foundation for incorporating theory into everyday practice. The first chapter introduces the buckling of columns. It begins with the linear elastic theory and proceeds to include the effects of large deformations and inelastic behavior. In Chapter 2 various approximate methods are illustrated along with the fundamentals of energy methods. The chapter concludes by introducing several special topics, some advanced, that are useful in understanding the physical resistance mechanisms and consistent and rigorous mathematical analysis. Chapters 3 and 4 cover buckling of beam-columns. Chapter 5 presents torsion in structures in some detail, which is one of the least well understood subjects in the entire spectrum of structural mechanics. Strictly speaking, torsion itself does not belong to a topic in structural stability, but needs to be covered to some extent for a better understanding of buckling accompanied with torsional behavior. Chapters 6 and 7 consider stability of framed structures in conjunction with torsional behavior of structures. Chapters 8 to 10 consider buckling of plate elements, cylindrical shells, and general shells. Although the book is primarily devoted to analysis, rudimentary design aspects are discussed. - Balanced presentation for both theory and practice - Well-blended contents covering elementary to advanced topics - Detailed presentation of the development


Uncertainty Modeling in Finite Element, Fatigue and Stability of Systems

Uncertainty Modeling in Finite Element, Fatigue and Stability of Systems

Author: Achintya Haldar

Publisher: World Scientific

Published: 1997

Total Pages: 437

ISBN-13: 9810231288

DOWNLOAD EBOOK

The functionality of modern structural, mechanical and electrical or electronic systems depends on their ability to perform under uncertain conditions. Consideration of uncertainties and their effect on system behavior is an essential and integral part of defining systems. In eleven chapters, leading experts present an overview of the current state of uncertainty modeling, analysis and design of large systems in four major areas: finite and boundary element methods (common structural analysis techniques), fatigue, stability analysis, and fault-tolerant systems. The content of this book is unique; it describes exciting research developments and challenges in emerging areas, and provide a sophisticated toolbox for tackling uncertainty modeling in real systems.


Structural Engineering Handbook, Fifth Edition

Structural Engineering Handbook, Fifth Edition

Author: Mustafa Mahamid

Publisher: McGraw Hill Professional

Published: 2020-04-17

Total Pages: 957

ISBN-13: 1260115992

DOWNLOAD EBOOK

Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. The industry-standard guide to structural engineering—fully updated for the latest advances and regulations For 50 years, this internationally renowned handbook has been the go-to reference for structural engineering specifications, codes, technologies, and procedures. Featuring contributions from a variety of experts, the book has been revised to align with the codes that govern structural design and materials, including IBC, ASCE 7, ASCE 37, ACI, AISC, AASHTO, NDS, and TMS. Concise, practical, and user-friendly, this one-of-a-kind resource contains real-world examples and detailed descriptions of today’s design methods. Structural Engineering Handbook, Fifth Edition, covers: • Computer applications in structural engineering • Earthquake engineering • Fatigue, brittle fracture, and lamellar tearing • Soil mechanics and foundations • Design of steel structural and composite members • Plastic design of steel frames • Design of cold-formed steel structural members • Design of aluminum structural members • Design of reinforced- and prestressed-concrete structural members • Masonry construction and timber structures • Arches and rigid frames • Bridges and girder boxes • Building design and considerations • Industrial and tall buildings • Thin-shell concrete structures • Special structures and nonbuilding structures