Handbook of Natural Computing

Handbook of Natural Computing

Author: Grzegorz Rozenberg

Publisher: Springer

Published: 2012-07-09

Total Pages: 2052

ISBN-13: 9783540929093

DOWNLOAD EBOOK

Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, i.e., it investigates models and computational techniques inspired by nature and also it investigates phenomena taking place in nature in terms of information processing. Examples of the first strand of research covered by the handbook include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata inspired by intercellular communication; swarm intelligence inspired by the behavior of groups of organisms; artificial immune systems inspired by the natural immune system; artificial life systems inspired by the properties of natural life in general; membrane computing inspired by the compartmentalized ways in which cells process information; and amorphous computing inspired by morphogenesis. Other examples of natural-computing paradigms are molecular computing and quantum computing, where the goal is to replace traditional electronic hardware, e.g., by bioware in molecular computing. In molecular computing, data are encoded as biomolecules and then molecular biology tools are used to transform the data, thus performing computations. In quantum computing, one exploits quantum-mechanical phenomena to perform computations and secure communications more efficiently than classical physics and, hence, traditional hardware allows. The second strand of research covered by the handbook, computation taking place in nature, is represented by investigations into, among others, the computational nature of self-assembly, which lies at the core of nanoscience, the computational nature of developmental processes, the computational nature of biochemical reactions, the computational nature of bacterial communication, the computational nature of brain processes, and the systems biology approach to bionetworks where cellular processes are treated in terms of communication and interaction, and, hence, in terms of computation. We are now witnessing exciting interaction between computer science and the natural sciences. While the natural sciences are rapidly absorbing notions, techniques and methodologies intrinsic to information processing, computer science is adapting and extending its traditional notion of computation, and computational techniques, to account for computation taking place in nature around us. Natural Computing is an important catalyst for this two-way interaction, and this handbook is a major record of this important development.


Handbook of Research on Natural Computing for Optimization Problems

Handbook of Research on Natural Computing for Optimization Problems

Author: Mandal, Jyotsna Kumar

Publisher: IGI Global

Published: 2016-05-25

Total Pages: 1199

ISBN-13: 1522500596

DOWNLOAD EBOOK

Nature-inspired computation is an interdisciplinary topic area that connects the natural sciences to computer science. Since natural computing is utilized in a variety of disciplines, it is imperative to research its capabilities in solving optimization issues. The Handbook of Research on Natural Computing for Optimization Problems discusses nascent optimization procedures in nature-inspired computation and the innovative tools and techniques being utilized in the field. Highlighting empirical research and best practices concerning various optimization issues, this publication is a comprehensive reference for researchers, academicians, students, scientists, and technology developers interested in a multidisciplinary perspective on natural computational systems.


Handbook of Natural Computing

Handbook of Natural Computing

Author: Grzegorz Rozenberg

Publisher: Springer

Published: 2012-10-17

Total Pages: 2052

ISBN-13: 9783540929116

DOWNLOAD EBOOK

Natural Computing is the field of research that investigates both human-designed computing inspired by nature and computing taking place in nature, i.e., it investigates models and computational techniques inspired by nature and also it investigates phenomena taking place in nature in terms of information processing. Examples of the first strand of research covered by the handbook include neural computation inspired by the functioning of the brain; evolutionary computation inspired by Darwinian evolution of species; cellular automata inspired by intercellular communication; swarm intelligence inspired by the behavior of groups of organisms; artificial immune systems inspired by the natural immune system; artificial life systems inspired by the properties of natural life in general; membrane computing inspired by the compartmentalized ways in which cells process information; and amorphous computing inspired by morphogenesis. Other examples of natural-computing paradigms are molecular computing and quantum computing, where the goal is to replace traditional electronic hardware, e.g., by bioware in molecular computing. In molecular computing, data are encoded as biomolecules and then molecular biology tools are used to transform the data, thus performing computations. In quantum computing, one exploits quantum-mechanical phenomena to perform computations and secure communications more efficiently than classical physics and, hence, traditional hardware allows. The second strand of research covered by the handbook, computation taking place in nature, is represented by investigations into, among others, the computational nature of self-assembly, which lies at the core of nanoscience, the computational nature of developmental processes, the computational nature of biochemical reactions, the computational nature of bacterial communication, the computational nature of brain processes, and the systems biology approach to bionetworks where cellular processes are treated in terms of communication and interaction, and, hence, in terms of computation. We are now witnessing exciting interaction between computer science and the natural sciences. While the natural sciences are rapidly absorbing notions, techniques and methodologies intrinsic to information processing, computer science is adapting and extending its traditional notion of computation, and computational techniques, to account for computation taking place in nature around us. Natural Computing is an important catalyst for this two-way interaction, and this handbook is a major record of this important development.


Handbook of Nature-Inspired and Innovative Computing

Handbook of Nature-Inspired and Innovative Computing

Author: Albert Y. Zomaya

Publisher: Springer Science & Business Media

Published: 2006-01-10

Total Pages: 758

ISBN-13: 9780387405322

DOWNLOAD EBOOK

As computing devices proliferate, demand increases for an understanding of emerging computing paradigms and models based on natural phenomena. Neural networks, evolution-based models, quantum computing, and DNA-based computing and simulations are all a necessary part of modern computing analysis and systems development. Vast literature exists on these new paradigms and their implications for a wide array of applications. This comprehensive handbook, the first of its kind to address the connection between nature-inspired and traditional computational paradigms, is a repository of case studies dealing with different problems in computing and solutions to these problems based on nature-inspired paradigms. The "Handbook of Nature-Inspired and Innovative Computing: Integrating Classical Models with Emerging Technologies" is an essential compilation of models, methods, and algorithms for researchers, professionals, and advanced-level students working in all areas of computer science, IT, biocomputing, and network engineering.


Handbook of Human Computation

Handbook of Human Computation

Author: Pietro Michelucci

Publisher: Springer Science & Business Media

Published: 2013-12-04

Total Pages: 1051

ISBN-13: 1461488060

DOWNLOAD EBOOK

This volume addresses the emerging area of human computation, The chapters, written by leading international researchers, explore existing and future opportunities to combine the respective strengths of both humans and machines in order to create powerful problem-solving capabilities. The book bridges scientific communities, capturing and integrating the unique perspective and achievements of each. It coalesces contributions from industry and across related disciplines in order to motivate, define, and anticipate the future of this exciting new frontier in science and cultural evolution. Readers can expect to find valuable contributions covering Foundations; Application Domains; Techniques and Modalities; Infrastructure and Architecture; Algorithms; Participation; Analysis; Policy and Security and the Impact of Human Computation. Researchers and professionals will find the Handbook of Human Computation a valuable reference tool. The breadth of content also provides a thorough foundation for students of the field.


Handbook of Neural Computation

Handbook of Neural Computation

Author: Pijush Samui

Publisher: Academic Press

Published: 2017-07-18

Total Pages: 660

ISBN-13: 0128113197

DOWNLOAD EBOOK

Handbook of Neural Computation explores neural computation applications, ranging from conventional fields of mechanical and civil engineering, to electronics, electrical engineering and computer science. This book covers the numerous applications of artificial and deep neural networks and their uses in learning machines, including image and speech recognition, natural language processing and risk analysis. Edited by renowned authorities in this field, this work is comprised of articles from reputable industry and academic scholars and experts from around the world. Each contributor presents a specific research issue with its recent and future trends. As the demand rises in the engineering and medical industries for neural networks and other machine learning methods to solve different types of operations, such as data prediction, classification of images, analysis of big data, and intelligent decision-making, this book provides readers with the latest, cutting-edge research in one comprehensive text. Features high-quality research articles on multivariate adaptive regression splines, the minimax probability machine, and more Discusses machine learning techniques, including classification, clustering, regression, web mining, information retrieval and natural language processing Covers supervised, unsupervised, reinforced, ensemble, and nature-inspired learning methods


Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications

Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications

Author: Management Association, Information Resources

Publisher: IGI Global

Published: 2016-07-26

Total Pages: 1810

ISBN-13: 1522507892

DOWNLOAD EBOOK

As technology continues to become more sophisticated, mimicking natural processes and phenomena also becomes more of a reality. Continued research in the field of natural computing enables an understanding of the world around us, in addition to opportunities for man-made computing to mirror the natural processes and systems that have existed for centuries. Nature-Inspired Computing: Concepts, Methodologies, Tools, and Applications takes an interdisciplinary approach to the topic of natural computing, including emerging technologies being developed for the purpose of simulating natural phenomena, applications across industries, and the future outlook of biologically and nature-inspired technologies. Emphasizing critical research in a comprehensive multi-volume set, this publication is designed for use by IT professionals, researchers, and graduate students studying intelligent computing.


Contemporary Evolution Strategies

Contemporary Evolution Strategies

Author: Thomas Bäck

Publisher: Springer Science & Business Media

Published: 2013-10-02

Total Pages: 101

ISBN-13: 3642401376

DOWNLOAD EBOOK

This book surveys key algorithm developments between 1990 and 2012, with brief descriptions, a unified pseudocode for each algorithm and downloadable program code. Provides a taxonomy to clarify similarities and differences as well as historical relationships.