One of the primary applications of human factors engineering is in the aviation domain, and the importance of human factors has never been greater as U.S. and European authorities seek to modernize the air transportation system through the introduction of advanced automation. This handbook provides regulators, practitioners, researchers, and educators a comprehensive resource for understanding and applying human factors to air transportation.
A complete examination of issues and concepts relating to human factors in simulation, this book covers theory and application in space, ships, submarines, naval aviation, and commercial aviation. The authors examine issues of simulation and their effect on the validity and functionality of simulators as a training device. The chapters contain in d
One of the primary applications of human factors engineering is in the aviation domain, and the importance of human factors has never been greater as U.S. and European authorities seek to modernize the air transportation system through the introduction of advanced automation. This handbook provides regulators, practitioners, researchers, and educators a comprehensive resource for understanding and applying human factors to air transportation.
The fourth edition of the Handbook of Human Factors and Ergonomics has been completely revised and updated. This includes all existing third edition chapters plus new chapters written to cover new areas. These include the following subjects: Managing low-back disorder risk in the workplace Online interactivity Neuroergonomics Office ergonomics Social networking HF&E in motor vehicle transportation User requirements Human factors and ergonomics in aviation Human factors in ambient intelligent environments As with the earlier editions, the main purpose of this handbook is to serve the needs of the human factors and ergonomics researchers, practitioners, and graduate students. Each chapter has a strong theory and scientific base, but is heavily focused on real world applications. As such, a significant number of case studies, examples, figures, and tables are included to aid in the understanding and application of the material covered.
This text discusses the skills and abilities that air-traffic controllers need. Its approach is international as air-traffic control practices throughout the world have to be mutually compatible and agreed.
Fully updated and expanded, the second edition of Human Factors in Aviation serves the needs of the widespread aviation community - students, engineers, scientists, pilots, managers and government personnel. Offering a comprehensive overview the volume covers topics such as pilot performance, human factors in aircraft design, vehicles and systems and NextGen issues. The need for an up-to-date, scienti?cally rigorous overview is underscored by the frequency with which human factors/crew error cause aviation accidents, pervasiveness of human error in safety breakdowns. Technical and communication advances, diminishing airspace and the priority of aviation safety all contribute to the generation of new human factors problems and the more extensive range of solutions. Now more than ever a solid foundation from which to begin addressing these issues is needed. - New edition thoroughly updated with 50% new material, offering full coverage of NexGen and other modern issues - Liberal use of case examples exposes students to real-world examples of dangers and solutions - Website with study questions and image collection
This textbook provides students and the broader aviation community with a complete, accessible guide to the subject of human factors in aviation. It covers the history of the field before breaking down the physical and psychological factors, organizational levels, technology, training, and other pivotal components of a pilot and crew's routine work in the field. The information is organized into easy-to-digest chapters with summaries and exercises based on key concepts covered, and it is supported by more than 100 full-color illustrations and photographs. All knowledge of human factors required in aviation university studies is conveyed in a concise and casual manner, through the use of helpful margin notes and anecdotes that appear throughout the text.
With the emergence of smart technology and automated systems in today’s world, artificial intelligence (AI) is being incorporated into an array of professions. The aviation and aerospace industry, specifically, is a field that has seen the successful implementation of early stages of automation in daily flight operations through flight management systems and autopilot. However, the effectiveness of aviation systems and the provision of flight safety still depend primarily upon the reliability of aviation specialists and human decision making. The Handbook of Research on Artificial Intelligence Applications in the Aviation and Aerospace Industries is a pivotal reference source that explores best practices for AI implementation in aviation to enhance security and the ability to learn, improve, and predict. While highlighting topics such as computer-aided design, automated systems, and human factors, this publication explores the enhancement of global aviation security as well as the methods of modern information systems in the aeronautics industry. This book is ideally designed for pilots, scientists, engineers, aviation operators, air crash investigators, teachers, academicians, researchers, and students seeking current research on the application of AI in the field of aviation.
Like the first edition, the revision of this successful Handbook responds to the growing need for specific tools and methods for testing and evaluating human-system interfaces. Indications are that the market for information on these tools and applications will continue to grow in the 21st century. One of the goals of offering a second edition is to expand and emphasize the application chapters, providing contemporary examples of human factors test and evaluation (HFTE) enterprises across a range of systems and environments. Coverage of the standard tools and techniques used in HFTE have been updated as well. New features of the Handbook of Human Factors Testing and Evaluation include: *new chapters covering human performance testing, manufacturing ergonomics, anthropometry, generative design methods, and usability testing; *updated tools and techniques for modeling, simulation, embedded testing, training assessment, and psychophysiological measurement; *new applications chapters presenting human factors testing examples in aviation and avionics, forestry, road safety, and software systems; and *more examples, illustrations, graphics and tables have been added. The orientation of the current work has been toward breadth of coverage rather than in-depth treatment of a few issues or techniques. Experienced testers will find much that is familiar, as well as new tools, creative approaches, and a rekindled enthusiasm. Newcomers will discover the diversity of issues, methods, and creative approaches that make up the field. In addition, the book is written in such a way that individuals outside the profession should learn the intrinsic value and pleasure in ensuring safe, efficient, and effective operation, as well as increased user satisfaction through HFTE.
Human error is implicated in nearly all aviation accidents, yet most investigation and prevention programs are not designed around any theoretical framework of human error. Appropriate for all levels of expertise, the book provides the knowledge and tools required to conduct a human error analysis of accidents, regardless of operational setting (i.e. military, commercial, or general aviation). The book contains a complete description of the Human Factors Analysis and Classification System (HFACS), which incorporates James Reason's model of latent and active failures as a foundation. Widely disseminated among military and civilian organizations, HFACS encompasses all aspects of human error, including the conditions of operators and elements of supervisory and organizational failure. It attracts a very broad readership. Specifically, the book serves as the main textbook for a course in aviation accident investigation taught by one of the authors at the University of Illinois. This book will also be used in courses designed for military safety officers and flight surgeons in the U.S. Navy, Army and the Canadian Defense Force, who currently utilize the HFACS system during aviation accident investigations. Additionally, the book has been incorporated into the popular workshop on accident analysis and prevention provided by the authors at several professional conferences world-wide. The book is also targeted for students attending Embry-Riddle Aeronautical University which has satellite campuses throughout the world and offers a course in human factors accident investigation for many of its majors. In addition, the book will be incorporated into courses offered by Transportation Safety International and the Southern California Safety Institute. Finally, this book serves as an excellent reference guide for many safety professionals and investigators already in the field.