Reduce the enormous economic and environmental impact of corrosion Emphasizing quantitative techniques, this guide provides you with: *Theory essential for understanding aqueous, atmospheric, and high temperature corrosion processes Corrosion resistance data for various materials Management techniques for dealing with corrosion control, including life prediction and cost analysis, information systems, and knowledge re-use Techniques for the detection, analysis, and prevention of corrosion damage, including protective coatings and cathodic protection More
Handbook of Science and Engineering of Green Corrosion Inhibitors: Modern Theory, Fundamentals and Practical Applications presents developments in green corrosion inhibitors and current applications. The book provides an overview of green corrosion inhibitors such as plant extracts, chemical medicines, natural polymers, synthetic green compounds, carbohydrates, amino acids and oleochemicals that can cost-effectively minimize corrosive damage. The book handles several compounds used as anticorrosive materials for different metals and alloys in a versatile corrosive environment. Sections address the fundamental characteristics of green corrosion inhibition and deal with the economic impact of corrosion and forms of corrosion, while also assessing and classifying corrosion inhibitors. The book covers a broad range of applications in green corrosion inhibition and concludes with new emerging trends in corrosion protection such as high temperature corrosion and its protection and nanomaterials as corrosion inhibitors. - Provides an overview of environmentally sustainable (green) corrosion inhibitors utilized in modern industrial platforms - Evaluates corrosion inhibitors as prime options for sustainable and transformational opportunities - Serves as a valuable reference for scientists and engineers who are searching modern design for corrosion inhibitors - Covers both synthetic and natural environmentally-friendly corrosion inhibitors
The Latest Methods for Preventing and Controlling Corrosion in All Types of Materials and Applications Now you can turn to Corrosion Engineering for expert coverage of the theory and current practices you need to understand water, atmospheric, and high-temperature corrosion processes. This comprehensive resource explains step-by-step how to prevent and control corrosion in all types of metallic materials and applications-from steel and aluminum structures to pipelines. Filled with 300 illustrations, this skills-building guide shows you how to utilize advanced inspection and monitoring methods for corrosion problems in infrastructure, process and food industries, manufacturing, and military industries. Authoritative and complete, Corrosion Engineering features: Expert guidance on corrosion prevention and control techniques Hands-on methods for inspection and monitoring of corrosion problems New methods for dealing with corrosion A review of current practice, with numerous examples and calculations Inside This Cutting-Edge Guide to Corrosion Prevention and Control • Introduction: Scope and Language of Corrosion • Electrochemistry of Corrosion • Environments: Atmospheric Corrosion • Corrosion by Water and Steam • Corrosion in Soils • Reinforced Concrete • High-Temperature Corrosion • Materials and How They Corrode: Engineering Materials • Forms of Corrosion • Methods of Control: Protective Coatings • Cathodic Protection • Corrosion Inhibitors • Failure Analysis and Design Considerations • Testing and Monitoring: Corrosion Testing and Monitoring
Corrosion costs billions of dollars to each and every single economy in the world. Corrosion is a chemical process, and it is crucial to understand the dynamics from a chemical perspective before proceeding with analyses, designs and solutions from an engineering aspect. The opposite is also true in the sense that scientists should take into consideration the contemporary aspects of the issue as it relates to the daily life before proceeding with specifically designed theoretical solutions. Corrosion Engineering is advised to both theoreticians and practitioners of corrosion alike. Corrosion engineering is a joint discipline associated primarily with major engineering sciences such as chemical engineering, civil engineering, petroleum engineering, mechanical engineering, metallurgical engineering, mining engineering among others and major fundamental sciences such as sub-disciplines of physical, inorganic and analytical chemistry as well as physics and biology, such as electrochemistry, surface chemistry, surface physics, solution chemistry, solid state chemistry and solid state physics, microbiology, and others. Corrosion Engineering is a must-have reference book for the engineer in the field that covers the corrosion process with its contemporary aspects with respect to both of its scientific and engineering aspects. It is also a valuable textbook that could be used in an engineering or scientific course on corrosion at the university level.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. The most complete corrosion control reference on the market―thoroughly revised for the latest advances This fully updated guide offers complete coverage of the latest corrosion-resistant materials, methods, and technologies. Written by a recognized expert on the subject, the book covers all aspects of corrosion damage, including detection, monitoring, prevention, and control. You will learn how to select materials and resolve design issues where corrosion is a factor. Handbook of Corrosion Engineering, Third Edition shows, step by step, how to understand, predict, evaluate, mitigate, and correct corrosion problems. This edition provides a new focus on the management of corrosion problems and draws on methodologies and examples from the 2016 IMPACT report. A new chapter discusses corrosion management across governments and industries. Coverage includes: • The functions and roles of a corrosion engineer • Atmospheric corrosion and mapping atmospheric corrosivity • Corrosion in waste water treatment and in water and soils • Corrosion of reinforced concrete • Microbes and biofouling • High-temperature corrosion • Modeling corrosion processes and life prediction • Corrosion failures • Corrosion maintenance through inspection and monitoring • Corrosion management across governments and industries • Selection and design considerations for engineering materials • Protective coatings and corrosion inhibitors • Cathodic and anodic protection
Corrosion Engineering: Principles and Solved Problems covers corrosion engineering through an extensive theoretical description of the principles of corrosion theory, passivity and corrosion prevention strategies and design of corrosion protection systems. The book is updated with results published in papers and reviews in the last twenty years. Solved corrosion case studies, corrosion analysis and solved corrosion problems in the book are presented to help the reader to understand the corrosion fundamental principles from thermodynamics and electrochemical kinetics, the mechanism that triggers the corrosion processes at the metal interface and how to control or inhibit the corrosion rates. The book covers the multidisciplinary nature of corrosion engineering through topics from electrochemistry, thermodynamics, mechanical, bioengineering and civil engineering. - Addresses the corrosion theory, passivity, material selections and designs - Covers extensively the corrosion engineering protection strategies - Contains over 500 solved problems, diagrams, case studies and end of chapter problems - Could be used as a text in advanced/graduate corrosion courses as well self-study reference for corrosion engineers
This four-volume reference work builds upon the success of past editions of Elsevier’s Corrosion title (by Shreir, Jarman, and Burstein), covering the range of innovations and applications that have emerged in the years since its publication. Developed in partnership with experts from the Corrosion and Protection Centre at the University of Manchester, Shreir’s Corrosion meets the research and productivity needs of engineers, consultants, and researchers alike. Incorporates coverage of all aspects of the corrosion phenomenon, from the science behind corrosion of metallic and non-metallic materials in liquids and gases to the management of corrosion in specific industries and applications Features cutting-edge topics such as medical applications, metal matrix composites, and corrosion modeling Covers the benefits and limitations of techniques from scanning probes to electrochemical noise and impedance spectroscopy